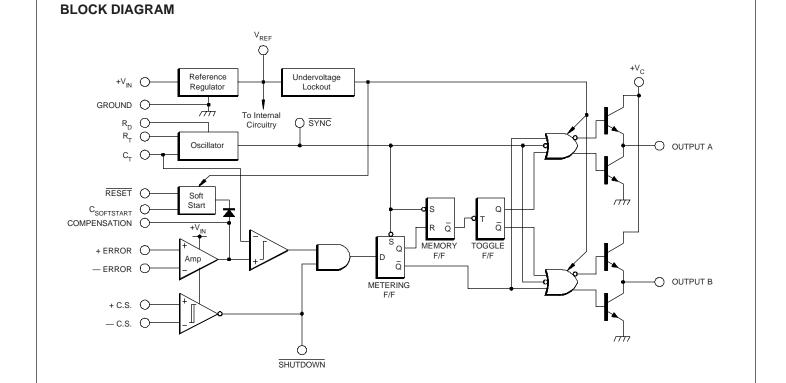


REGULATING PULSE WIDTH MODULATOR

DESCRIPTION


The SG1526B is a high-performance pulse width modulator for switching power supplies which offers improved functional and electrical characteristics over the industry-standard SG1526. A direct pin-for-pin replacement for the earlier device with all its features, it incorporates the following enhancements: a bandgap reference circuit for improved regulation and drift characteristics, improved undervoltage lockout, lower temperature coefficients on oscillator frequency and current-sense threshold, tighter tolerance on softstart time, much faster SHUTDOWN response, improved double-pulse supperession logic for higher speed operation, and an improved output driver design with low shoot-through current, and faster rise and fall times. This versatile device can be used to implement single-ended or push-pull switching regulators of either polarity, both transformer-less and transformer-coupled. The SG1526B is specified for operation over the full military ambient temperature range of -55°C to 150°C. The SG2526B is characterized for the industrial range of -25°C to 150°C, and the SG3526B is designed for the commercial range of 0°C to 125°C.

FEATURES

- 8 to 35 volt operation
- 5V low drift 1% bandgap reference
- 1Hz to 500KHz oscillator range
- Dual 100mA source/sink
- Digital current limiting
- Double pulse suppression
- Programmable deadtime
- Improved undervoltage lockout
- · Single pulse metering
- Programmable soft-start
- Wide current limit common mode range
- TTL/CMOS compatible logic ports
- Symmetry correction capability
- Guaranteed 6 unit synchronization
- Shoot thru currents less than 100mA
- Improved shutdown delay
- · Improved rise and fall time

HIGH RELIABILITY FEATURES - SG1526B

- ♦ Available to MIL-STD-883
- ♦ MIL-M38510/12603BVA JAN1526BJ
- ♦ Radiation data available
- ♦ LMI level "S" processing available

ABSOLUTE MAXIMUM RATINGS (Note 1)

Input Voltage (V _{IN})	40V
Collector Supply Voltage (V _c)	40V
Logic Inputs0.3	V to 5.5V
Analog Inputs	0.3V to V _{IN}
Source/Sink Load Current (each output)	
Reference Load Current	50mA

Note 1. Exceeding these ratings could cause damage to the device.

Logic Sink Current	15mA
Operating Junction Temperature	
Hermetic (J, L Packages)	150°C
Plastic (N, DW Packages)	150°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature (Soldering, 10 Seconds)	300°C
RoHS Peak Package Solder Reflow Temp. (40 sec. max. exp	.) 260°C (+0, -5)

THERMAL DATA

J Package:

Note A. Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$.

Note B. The above numbers for θ_{JC} are maximums for the limiting thermal resistance of the package in a standard mounting configuration. The θ_{JA} numbers are meant to be guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

RECOMMENDED OPERATING CONDITIONS (Note 2)

Input Voltage	
Collector Supply Voltage	4.5V to 35V
Sink/Source Load Current (each output) .	0 to 100mA
Reference Load Current	0 to 20mA
Oscillator Frequency Range	1Hz to 500KHz
Oscillator Timing Resistor	2K Ω to 150K Ω

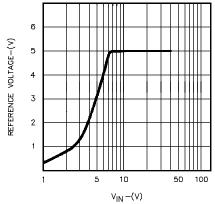
Note 2. Range over which the device is functional.

Oscillator Timing Capacitor	. 470pF to 20μF
Available Deadtime Range at 40KHz	5% to 50%
Operating Junction Temperature Range:	
SG1526B	-55°C to 125°C
SG2526B	25°C to 85°C
SG3526B	0°C to 70°C

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG1526B with -55°C \leq T_A \leq 125°C, SG2526B with -25°C \leq T_A \leq 85°C, SG3526B with 0°C \leq T_A \leq 70°C, and V_{IN} = 15V. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)

Parameter	Test Conditions	SG1526B/2526B			SG3526B			Units
Faranteter	rest Conditions		Тур.	Max.	Min.	Тур.	Max.	Ullits
Reference Section (Note 3)								
Output Voltage	T ₁ = 25°C	4.95	5.00	5.05	4.90	5.00	5.10	V
Line Regulation	$V_{IN} = 8 \text{ to } 35V$		7	10		10	20	mV
Load Regulation	I, = 0 to 20mA		10	20		10	25	mV
Temperature Stability (Note 9)	Över Operating T		15	50		15	50	mV
Total Output Voltage Range (Note 9)		4.90	5.00	5.10	4.85	5.00	5.15	V
Short Circuit Current	$V_{REF} = 0V$	25	50	125	25	50	125	mA
Undervoltage Lockout Section								
RESET Output Voltage	$V_{REF} = 3.8V$		0.2	0.4		0.2	0.4	V
RESET Output Voltage	$V_{REF} = 4.8V$	2.4	4.8		2.4	4.8		V


ELECTRICAL CHARACTERISTICS (continued)

$ \begin{array}{ c c c c } \hline \textbf{Oscillator Section} & \textbf{Note 4} \\ \hline \textbf{Initial Accuracy} \\ \hline \textbf{Voltage Stability} \\ \hline \textbf{Note 9} \\ \hline \textbf{Maximum Frequency} \\ \hline \textbf{R}_{T} & = 150K\Omega, C_{T} & = 20\mu F \\ \hline \textbf{Maximum Frequency} \\ \hline \textbf{R}_{T} & = 2K\Omega, C_{T} & = 470pF \\ \hline \textbf{Sowtooth Peak Voltage} \\ \hline \textbf{Sawtooth Valley Voltage} \\ \hline \textbf{V}_{N} & = 8V \\ \hline \textbf{SYNC Pulse Width} \\ \hline \textbf{R}_{L} & = 2.0K\Omega \text{ to V}_{REF} \\ \hline \textbf{Error Amplifier Section} \\ \hline \textbf{Input Offset Voltage} \\ \hline \textbf{Input Offset Voltage} \\ \hline \textbf{Input Offset Current} \\ \hline \textbf{DC Open Loop Gain} \\ \hline \textbf{R}_{L} & \geq 10M\Omega \\ \hline \textbf{V}_{PIN1} & V_{PIN2} & \geq 150mV, I_{SOURCE} & = 100\mu A \\ \hline \textbf{A} & 3.6 \\ \hline \textbf{Low Output Voltage} \\ \hline \textbf{V}_{PIN1} & V_{PIN2} & \geq 150mV, I_{SOURCE} & = 100\mu A \\ \hline \textbf{A} & 3.6 \\ \hline \textbf{Common Mode Rejection} \\ \hline \textbf{R}_{S} & \geq 2K\Omega \\ \hline \textbf{Digital Ports (SYNC, SHUTDOWN, and RESET)} \\ \hline \textbf{HIGH Output Voltage} \\ \hline \textbf{V}_{VR} & \geq 2.4V \\ \hline \textbf{LOW Upt Urcernt} \\ \hline \textbf{LOW Output Voltage} \\ \hline \textbf{V}_{VR} & = 3.6mA \\ \hline \textbf{V}_{VR} & = 2.4V \\ \hline \textbf{LOW Input Current} \\ \hline \textbf{LOW Output Current} \\ \hline \textbf{V}_{VR} & = 2.4V \\ \hline \textbf{LOW Delay to Output} \\ \hline \textbf{Voltage} \\ \hline \textbf{R}_{S} & \leq 50\Omega \\ \hline \textbf{Sense Voltage} \\ \hline \textbf{R}_{RS} & = 50\Omega \\ \hline \textbf{R}_{S} & = 50\Omega \\ \hline \textbf{R}_{SET} & = 0.4V \\ \hline \textbf{Current Limit Comparator Section} \\ \hline \textbf{R}_{RSET} & = 0.4V \\ \hline \textbf{Current Limit Comparator Section} \\ \hline \textbf{R}_{RSET} & = 0.4V \\ \hline \textbf{Current Delay to Output (Note 9)} \\ \hline \textbf{Soff-Start Section} \\ \hline \textbf{R}_{RSET} & = 0.4V \\ \hline \textbf{Curtent Divers (each output)} \\ \hline \textbf{Note Pince} & = 20mA \\ \hline \textbf{I}_{SOURCE} & = 20mA \\ \textbf{I}_{SOURCE} & = 20mA \\ \textbf{I}_{SOURCE} & = 100mA \\ \hline \textbf{12.} \\ \hline \textbf{13.} \\ \hline \textbf{14.} \\ \hline \textbf{15.} $	5 3.0	±8 1.0 10 1.0	Min.	±3 0.5	Max.	Units				
$ \begin{array}{ c c c c } \hline \text{Initial Accuracy} & T_J = 25^{\circ}\text{C} \\ \hline \text{Voltage Stability} & V_N = 8 \text{ to } 35\text{V} \\ \hline \text{Temperature Stability} & \text{Voltage} & \text{Stability} \\ \hline \text{Minimum Frequency} & \text{Note Operating } T_J \\ \hline \text{Minimum Frequency} & R_T = 150\text{K}\Omega, C_T = 20\mu\text{F} \\ \hline \text{Maximum Frequency} & R_T = 2K\Omega, C_T = 470\text{pF} \\ \hline \text{Sawtooth Valley Voltage} & V_N = 35\text{V} \\ \hline \text{Sawtooth Valley Voltage} & V_N = 8\text{V} \\ \hline \text{SYNC Pulse Width} & R_L = 2.0\text{K}\Omega \text{ to } V_{\text{REF}} \\ \hline \textbf{Error Amplifier Section} & \text{(Note 5)} \\ \hline \text{Input Offset Voltage} & R_S \leq 2K\Omega \\ \hline \text{Input Offset Current} & \\ \hline \text{DC Open Loop Gain} & R_L \geq 10\text{M}\Omega \\ \hline \text{Low Output Voltage} & V_{\text{PINV}} \cdot V_{\text{PINV}} \geq 150\text{mV}, I_{\text{SOURCE}} = 100\mu\text{A} \\ \hline \text{Common Mode Rejection} & R_S \leq 2K\Omega \\ \hline \text{Supply Voltage Rejection} & R_S \leq 2K\Omega \\ \hline \hline \text{Supply Voltage Rejection} & V_{\text{N}} = 8\text{V to } 35\text{V} \\ \hline \hline \text{Minimum Duty Cycle} & V_{\text{COMPENSATION}} = 0.4\text{V} \\ \hline \text{Minimum Duty Cycle} & V_{\text{COMPENSATION}} = 3.6\text{V} \\ \hline \hline \text{Migital Ports (SYNC, SHUTDOWN, and RESET)} \\ \hline \text{HIGH Output Voltage} & I_{\text{SOURCE}} = 40\mu\text{A} \\ \hline \text{LOW Output Voltage} & I_{\text{SOURCE}} = 40\mu\text{A} \\ \hline \text{LOW Output Current} & V_{\text{H}} = 2.4\text{V} \\ \hline \text{LOW Input Current} & V_{\text{H}} = 2.4\text{V} \\ \hline \text{LOW Input Current} & V_{\text{H}} = 2.4\text{V} \\ \hline \text{Current Limit Comparator Section} & \text{RESET} = 0.4\text{V} \\ \hline \text{Sense Voltage} & \text{Reset} = 2\text{EV} \\ \hline \text{Soft-Start Section} \\ \hline \text{Error Clamp Voltage} & RESET} = 2.4\text{V} \\ \hline \text{Output Drivers (each output)} & \text{(Note 7)} \\ \hline \text{HIGH Output Voltage} & RESET} = 2.4\text{V} \\ \hline \text{Output Drivers (each output)} & \text{(Note 7)} \\ \hline \text{HIGH Output Voltage} & RESET} = 2.4\text{V} \\ \hline \text{Output Drivers (each output)} & \text{(Note 7)} \\ \hline \text{HIGH Output Voltage} & Reset = 2\text{ComA} \\ \hline \text{Input Bias Current} & Reset = 2\text{ComA} \\ \hline \text{Input Bias Current} & Reset = 2\text{ComA} \\ \hline \text{Input Bias Current} & Reset = 2\text{ComA} \\ \hline \text{Input Bias Current} & Reset = 2\text{ComA} \\ \hline \text{Input Drivers (each output)} & \text{(Note 7)} \\ \hline \text{Input Drivers (each output)} & \text{(Note 7)} \\ \hline Input Drivers (e$	0.5 7 0 5 3.0 5 1.0	1.0								
Voltage Stability $V_{N}^{'} = 8 \text{ to } 35V$ Temperature Stability (Note 9) Over Operating T_{J} Minimum Frequency (Note 9) $R_{T} = 150K\Omega, C_{T} = 20\mu F$ Maximum Frequency $R_{T} = 2K\Omega, C_{T} = 470pF$ Sawtooth Peak Voltage $V_{N} = 35V$ Sawtooth Valley Voltage $V_{N} = 8V$ SYNC Pulse Width $R_{L} = 2.0K\Omega$ to V_{REF} Error Amplifier Section (Note 5) Input Offset Voltage $R_{S} \le 2K\Omega$ Input Offset Current $R_{L} = 10M\Omega$ DC Open Loop Gain $R_{L} = 10M\Omega$ Low Output Voltage $R_{S} \le 2K\Omega$ Common Mode Rejection $R_{S} \le 2K\Omega$ Supply Voltage Rejection $R_{S} \le 2K\Omega$ Minimum Duty Cycle $R_{S} = 2K\Omega$ Minimum Duty Cycle $R_{S} = 2K\Omega$ Digital Ports (SYNC, SHUTDOWN, and RESET) HIGH Output Voltage $R_{S} \le 2K\Omega$ Isource = 40 μ A Low Output Voltage $R_{S} = 2K\Omega$ Digital Rorts (SYNC, SHUTDOWN) RESET = 0.4V Current Limit Comparator Section (Note 6) Sense Voltage $R_{S} \le 5\Omega\Omega$ Sense Voltage $R_{S} \le 5\Omega\Omega$ Soft-Start Section Error Clamp Voltage $R_{S} \le 5\Omega$ Figure = 2.4V Doutput Drivers (each output) (Note 7) HIGH Output Voltage $R_{S} \le 5\Omega$	0.5 7 0 5 3.0 5 1.0	1.0								
Temperature Stability (Note 9)	7 0 5 3.0 5 1.0	10		0.5	±8	%				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0 5 3.0 5 1.0			0.0	1.0	%				
Maximum Frequency $R_{\tau} = 2K\Omega$, $C_{\tau} = 470pF$ 500 Sawtooth Peak Voltage $V_{th} = 35V$ 2.5 Sawtooth Valley Voltage $V_{th} = 35V$ 0.5 Sawtooth Valley Voltage $V_{th} = 35V$ 0.5 Sawtooth Valley Voltage $V_{th} = 8V$ 0.5 Signature $V_{th} = 8V$ 0.7 S	5 3.0 5 1.0	1.0		3	5	%				
Sawtooth Peak Voltage $V_{IN} = 35V$ $V_{IN} = 8V$ 0.5 SyNC Pulse Width $R_L = 2.0K\Omega$ to V_{REF} $R_L = 2.0K\Omega$ $R_L = $	5 3.0 5 1.0				1.0	Hz				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 1.0		500			KHz				
Sawtooth Valley Voltage $V_{IN}^{\circ} = 8V$ 0.5 SYNC Pulse Width $R_L = 2.0 K\Omega$ to V_{REF} 0.5 Error Amplifier Section (Note 5) Input Offset Voltage Rs ≤ 2KΩ Input Offset Voltage Rs ≤ 2KΩ Input Offset Voltage Input Offset Current DC Open Loop Gain Rs ≤ 10MΩ 64 High Output Voltage Vpin1 - Vpin2 ≥ 150mV, Isource = 100μA 3.6 Low Output Voltage Vpin2 - Vpin3 ≥ 150mV, Isource = 100μA 70 Supply Voltage Rejection Rs ≤ 2KΩ 70 PWM Comparator Section (Note 4) Voltage = 8V to 35V 66 PWM Comparator Section (Note 4) Voltage = 8V to 35V 45 Digital Ports (SYNC, SHUTDOWN, and RESET) 45 HIGH Output Voltage Isource = 40μA 2.4 LOW Output Voltage Isource = 40μA 2.4 LOW Input Current Vpin = 2.4V Vpin = 2.4V LOW Input Current Vpin = 2.4V Vpin = 2.4V LOW Input Courrent Vpin = 2.4V Vpin = 2.4V Current Limit Comparator Section (Note 6) Sense Voltage 90 Input Bias Current Reset = 0.4V 50 <		3.5	2.5	3.0	3.5	V				
SYNC Pulse Width $R_L = 2.0$ KΩ to V_{REF} Error Amplifier Section (Note 5) Input Offset Voltage $R_S \le 2$ KΩ Input Offset Current $R_L \ge 10$ MΩ DC Open Loop Gain $R_L \ge 10$ MΩ High Output Voltage $V_{PIN1} \cdot V_{PIN2} \ge 150$ mV, $I_{SOURCE} = 100$ μA 3.6 M Low Output Voltage $V_{PIN2} \cdot V_{PIN1} \ge 150$ mV, $I_{SOURCE} = 100$ μA 3.6 M Common Mode Rejection $R_S \le 2$ KΩ 70 mode Supply Voltage Rejection $V_{PIN2} \cdot V_{PIN1} \ge 150$ mV, $I_{SOURCE} = 100$ μA 70 mode PWM Comparator Section (Note 4) $V_{PIN2} \cdot V_{PIN1} \ge 150$ mV, $I_{SOURCE} = 100$ μA 40 mode Maximum Duty Cycle $V_{COMPENSATION} = 0.4$ V 40 mode Maximum Duty Cycle $V_{COMPENSATION} = 0.4$ V 40 mode Digital Ports (SYNC, SHUTDOWN, and RESET) 40 mode 40 mode HIGH Output Voltage $I_{SOURCE} = 40$ μA 2.4 mode LOW Input Current $V_{IM} = 2.4$ V $V_{IM} = 2.4$ V LOW Input Current $V_{IM} = 0.4$ V $V_{IM} = 0.4$ V Sense Voltage $I_{IM} = 0.4$ Mode $I_{IM} = 0.4$ Mode Sense Voltage $I_{IM} = 0.4$ Mode	1.0	1.1	0.5	1.0	1.1	V				
$ \begin{array}{ c c c c } \hline \text{Input Offset Voltage} & R_s \leq 2K\Omega \\ \hline \text{Input Offset Current} & Bas Current \\ \hline \text{DC Open Loop Gain} & R_L \geq 10M\Omega \\ \hline \text{High Output Voltage} & V_{\text{PIN1}} - V_{\text{PIN2}} \geq 150\text{mV}, \ I_{\text{SOURCE}} = 100\mu\text{A} \\ \hline \text{Jow Output Voltage} & V_{\text{PIN1}} - V_{\text{PIN2}} \geq 150\text{mV}, \ I_{\text{SINK}} = 100\mu\text{A} \\ \hline \text{Common Mode Rejection} & R_s \leq 2K\Omega \\ \hline \text{Common Mode Rejection} & V_{\text{NN}} = 8V \text{ to } 35V \\ \hline \text{Common Mode Rejection} & V_{\text{IN}} = 8V \text{ to } 35V \\ \hline \textbf{Minimum Duty Cycle} & V_{\text{COMPENSATION}} = 0.4V \\ \hline \text{Minimum Duty Cycle} & V_{\text{COMPENSATION}} = 3.6V \\ \hline \textbf{Maximum Duty Cycle} & V_{\text{COMPENSATION}} = 3.6V \\ \hline \textbf{Digital Ports (SYNC, SHUTDOWN, and RESET)} \\ \hline \textbf{HIGH Output Voltage} & I_{\text{SUNCE}} = 40\mu\text{A} \\ I_{\text{SINK}} = 3.6\text{mA} \\ \hline \textbf{HIGH Input Current} & V_{\text{IH}} = 2.4V \\ \hline \textbf{LOW Output Voltage} & I_{\text{SUNCE}} = 40\mu\text{A} \\ \hline \textbf{SINUTDOWN Delay to Output} & (Note9) \\ \hline \textbf{Current Limit Comparator Section} & (Note 6) \\ \hline \textbf{Sense Voltage} & R_s \leq 50\Omega & 90 \\ \hline \textbf{Input Bias Current} & Delay to Output (Note 9) \\ \hline \textbf{Soft-Start Section} & \hline \textbf{RESET} = 0.4V \\ \hline \textbf{C}_s \text{ Charging Current} & RESET = 2.4V \\ \hline \textbf{Output Drivers (each output)} & (Note 7) \\ \hline \textbf{HIGH Output Voltage} & RESET = 2.4V \\ \hline \textbf{Output Drivers (each output)} & (Note 7) \\ \hline \textbf{HIGH Output Voltage} & I_{\text{SOURCE}} = 20\text{mA} \\ \hline \textbf{12.} & \textbf{12.} & \textbf{12.} \\ \hline \textbf{MIGH Output Voltage} & I_{\text{SOURCE}} = 20\text{mA} \\ \hline \textbf{12.} & \textbf{12.} \\ \hline \textbf{MIGH Output Voltage} & I_{\text{SOURCE}} = 20\text{mA} \\ \hline \textbf{12.} & \textbf{12.} \\ \hline \textbf{MIGH Output Voltage} & I_{\text{SOURCE}} = 20\text{mA} \\ \hline \textbf{12.} & \textbf{12.} \\ \hline \textbf{MIGH Output Voltage} & I_{\text{SOURCE}} = 20\text{mA} \\ \hline \textbf{12.} & \textbf{12.} \\ \hline \textbf{MIGH Output Voltage} & I_{\text{SOURCE}} = 20\text{mA} \\ \hline \textbf{12.} & \textbf{12.} \\ \hline \textbf{MIGH Output Voltage} & I_{\text{SOURCE}} = 20\text{mA} \\ \hline \textbf{12.} \\ \hline \textbf{MIGH Output Voltage} & I_{\text{SOURCE}} = 20\text{mA} \\ \hline \textbf{12.} & \textbf{12.} \\ \hline \textbf{MIGH Output Voltage} & I_{\text{SOURCE}} = 20\text{mA} \\ \hline \textbf{12.} \\ \hline \textbf{13.} \\ \hline \textbf{14.} & \textbf{14.} \\ \hline \textbf{14.} \\ \hline \textbf{15.} \\ $	_	2		1.0	2	μs				
Input Bias Current Input Offset Current DC Open Loop Gain R _L ≥ 10MΩ $V_{PIN1} - V_{PIN2} ≥ 150 \text{mV}, I_{SOURCE} = 100 \mu A$ 3.6 A High Output Voltage Common Mode Rejection R _S ≥ 2KΩ To Supply Voltage Rejection V _{IN1} = 8V to 35V PWM Comparator Section (Note 4) Minimum Duty Cycle Maximum Duty Cycle Maximum Duty Cycle V _{COMPENSATION} = 3.6V Digital Ports (SYNC, SHUTDOWN, and RESET) HIGH Output Voltage I SOURCE = 40 μA I SINIK = 3.6 mA I SHUTDOWN Delay to Output V _{IL} = 0.4V SHUTDOWN Delay to Output V _{IL} = 0.4V SHUTDOWN Delay to Output Current Limit Comparator Section (Note 6) Sense Voltage R _S ≤ 50Ω I 90 Input Bias Current Delay to Output (Note 9) Soft-Start Section Error Clamp Voltage R _S = 2 KΩ RESET = 0.4V RESET = 2.4V REST = 2.4V RES										
Input Bias Current Input Offset Current DC Open Loop Gain R _L ≥ 10MΩ R _I > V _{PIN1} - V _{PIN2} ≥ 150mV, I _{SOURCE} = 100μA 3.6 High Output Voltage V _{PIN1} - V _{PIN2} ≥ 150mV, I _{SINK} = 100μA Common Mode Rejection R _S ≤ 2KΩ To Supply Voltage Rejection V _{IN} = 8V to 35V Final Ports (SYNC, SHUTDOWN, and RESET) HIGH Output Voltage ISOURCE = 40μA ISINK = 3.6mA IHIGH Input Current V _{IH} = 2.4V LOW Input Current V _{IH} = 2.4V LOW Input Current V _{IL} = 0.4V SHUTDOWN Delay to Output Voltage Rejection (Note 6) Sense Voltage R _S ≤ 50Ω Reserved Re	2	5		2	10	mV				
DC Open Loop Gain $R_L \ge 10M\Omega$ 64High Output Voltage $V_{\text{PIN1}} - V_{\text{PIN2}} \ge 150\text{mV}$, $I_{\text{SOURCE}} = 100\mu\text{A}$ 3.6Low Output Voltage $V_{\text{PIN2}} - V_{\text{PIN1}} \ge 150\text{mV}$, $I_{\text{SINIK}} = 100\mu\text{A}$ 70Common Mode Rejection $R_S \le 2K\Omega$ 70Supply Voltage Rejection $V_{\text{IN}} = 8V \text{ to } 35V$ 66PWM Comparator Section (Note 4)Minimum Duty Cycle $V_{\text{COMPENSATION}} = 0.4V$ Maximum Duty Cycle $V_{\text{COMPENSATION}} = 3.6V$ 45Digital Ports (SYNC, SHUTDOWN, and RESET)HIGH Output Voltage $I_{\text{SINK}} = 3.6\text{mA}$ 2.4LOW Output Voltage $I_{\text{SINK}} = 3.6\text{mA}$ 2.4LOW Input Current $V_{\text{IL}} = 0.4V$ 2.4VLOW Input Current $V_{\text{IL}} = 0.4V$ 2.4VSHUTDOWN Delay to Output(Note 9)90Current Limit Comparator Section (Note 6)Sense Voltage $R_S \le 50\Omega$ 90Input Bias Current90Delay to Output (Note 9)90Soft-Start SectionError Clamp Voltage $RESET = 0.4V$ C_S Charging Current $RESET = 2.4V$ 50Output Drivers (each output) (Note 7)12.5HIGH Output Voltage $I_{\text{SOURCE}} = 20\text{mA}$ 12.5	-350	-1000	ı I	-350	-2000	nΑ				
High Output Voltage $V_{\text{PIN1}} - V_{\text{PIN2}} \ge 150 \text{mV}$, $I_{\text{SOURCE}} = 100 \mu \text{A}$ 3.6Low Output Voltage $V_{\text{PIN2}} - V_{\text{PIN1}} \ge 150 \text{mV}$, $I_{\text{SINK}} = 100 \mu \text{A}$ 7.6Common Mode Rejection $R_{\text{S}} \le 2 \text{K}\Omega$ 70Supply Voltage Rejection $V_{\text{IN}} = 8 \text{V to } 35 \text{V}$ 66PWM Comparator Section (Note 4)Minimum Duty Cycle $V_{\text{COMPENSATION}} = 0.4 \text{V}$ Maximum Duty Cycle $V_{\text{COMPENSATION}} = 3.6 \text{V}$ 45Digital Ports (SYNC, SHUTDOWN, and RESET)HIGH Output Voltage $I_{\text{SINK}} = 3.6 \text{mA}$ 2.4LOW Output Voltage $I_{\text{SINK}} = 3.6 \text{mA}$ 2.4HIGH Input Current $V_{\text{IL}} = 0.4 \text{V}$ 2.4LOW Input Current $V_{\text{IL}} = 0.4 \text{V}$ 2.4SHUTDOWN Delay to Output(Note9)90Current Limit Comparator Section (Note 6)Sense Voltage $R_{\text{S}} \le 50\Omega$ 90Input Bias Current90Delay to Output (Note 9)90Soft-Start SectionError Clamp Voltage $R_{\text{ESET}} = 0.4 \text{V}$ C_{S} Charging Current $R_{\text{ESET}} = 2.4 \text{V}$ 50Output Drivers (each output) (Note 7) $I_{\text{SOURCE}} = 20 \text{mA}$ 12.3	35	100		35	200	nA				
High Output Voltage $V_{\text{PIN1}} - V_{\text{PIN2}} \ge 150 \text{mV}$, $I_{\text{SOURCE}} = 100 \mu \text{A}$ 3.6Low Output Voltage $V_{\text{PIN2}} - V_{\text{PIN1}} \ge 150 \text{mV}$, $I_{\text{SINK}} = 100 \mu \text{A}$ 7.6Common Mode Rejection $R_{\text{S}} \le 2 \text{K}\Omega$ 70Supply Voltage Rejection $V_{\text{IN}} = 8 \text{V to } 35 \text{V}$ 66PWM Comparator Section (Note 4)Minimum Duty Cycle $V_{\text{COMPENSATION}} = 0.4 \text{V}$ Maximum Duty Cycle $V_{\text{COMPENSATION}} = 3.6 \text{V}$ 45Digital Ports (SYNC, SHUTDOWN, and RESET)HIGH Output Voltage $I_{\text{SINK}} = 3.6 \text{mA}$ 2.4LOW Output Voltage $I_{\text{SINK}} = 3.6 \text{mA}$ 2.4HIGH Input Current $V_{\text{IL}} = 0.4 \text{V}$ 2.4LOW Input Current $V_{\text{IL}} = 0.4 \text{V}$ 2.4SHUTDOWN Delay to Output(Note9)90Current Limit Comparator Section (Note 6)Sense Voltage $R_{\text{S}} \le 50\Omega$ 90Input Bias Current90Delay to Output (Note 9)90Soft-Start SectionError Clamp Voltage $R_{\text{ESET}} = 0.4 \text{V}$ C_{S} Charging Current $R_{\text{ESET}} = 2.4 \text{V}$ 50Output Drivers (each output) (Note 7) $I_{\text{SOURCE}} = 20 \text{mA}$ 12.3	1 72		60	72		dB				
Low Output Voltage $V_{\text{PINZ}} - V_{\text{PINI}} \ge 150 \text{mV}$, $I_{\text{SINK}} = 100 \mu \text{A}$ Common Mode Rejection $R_{\text{S}} \le 2 \text{K}\Omega$ 70Supply Voltage Rejection $V_{\text{IN}} = 8 \text{V to } 35 \text{V}$ 66PWM Comparator Section (Note 4)Minimum Duty Cycle $V_{\text{COMPENSATION}} = 0.4 \text{V}$ Maximum Duty Cycle $V_{\text{COMPENSATION}} = 3.6 \text{V}$ 45Digital Ports (SYNC, SHUTDOWN, and RESET)HIGH Output Voltage $I_{\text{SOURCE}} = 40 \mu \text{A}$ 2.4LOW Output Voltage $I_{\text{SINK}} = 3.6 \text{mA}$ 2.4HIGH Input Current $V_{\text{IL}} = 0.4 \text{V}$ 2.4VLOW Input Current $V_{\text{IL}} = 0.4 \text{V}$ 2.4VSHUTDOWN Delay to Output(Note9)Current Limit Comparator Section (Note 6)Sense Voltage $R_{\text{S}} \le 50 \Omega$ 90Input Bias CurrentPolay to Output (Note 9)Soft-Start SectionError Clamp Voltage $R_{\text{ESET}} = 0.4 \text{V}$ C_{S} Charging Current $R_{\text{ESET}} = 2.4 \text{V}$ 50Output Drivers (each output) (Note 7)HIGH Output Voltage12.3	6 4.2		3.6	4.2		V				
Common Mode Rejection $R_s \le 2K\Omega$ 70 Supply Voltage Rejection $V_{IN} = 8V$ to $35V$ 66 PWM Comparator Section (Note 4) Minimum Duty Cycle $V_{COMPENSATION} = 0.4V$ 45 Maximum Duty Cycle $V_{COMPENSATION} = 3.6V$ 45 Digital Ports (SYNC, SHUTDOWN, and RESET) HIGH Output Voltage $I_{SOURCE} = 40\mu A$ 2.4 LOW Output Voltage $I_{SINK} = 3.6mA$ HIGH Input Current $V_{IL} = 0.4V$ 10 LOW Input Current $V_{IL} = 0.4V$ 10 Note 9) Current Limit Comparator Section (Note 6) Sense Voltage $I_{SOURCE} = 80\mu A$ 90 Input Bias Current Delay to Output (Note 9) Soft-Start Section Error Clamp Voltage $I_{SOURCE} = 0.4V$ $I_{SOURCE} $	0.2	0.4		0.2	0.4	V				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	94		70	94		dB				
PWM Comparator Section (Note 4)Minimum Duty Cycle $V_{COMPENSATION} = 0.4V$ Maximum Duty Cycle $V_{COMPENSATION} = 3.6V$ Digital Ports (SYNC, SHUTDOWN, and RESET)HIGH Output Voltage $I_{SOURCE} = 40 \mu A$ LOW Output Voltage $I_{SINK} = 3.6 m A$ HIGH Input Current $V_{H} = 2.4V$ LOW Input Current $V_{IL} = 0.4V$ SHUTDOWN Delay to Output(Note9)Current Limit Comparator Section (Note 6)Sense Voltage $R_S \le 50\Omega$ Input Bias Current $P_S = 1.000$ Delay to Output (Note 9) $P_S = 1.000$ Soft-Start Section $P_S = 1.000$ Error Clamp Voltage $P_S = 1.000$ $P_S = 1.0000$ $P_S = 1.000$ $P_S = 1.0000$ $P_S = 1.000$	80		66	80		dB				
Maximum Duty Cycle $V_{COMPENSATION}$ $= 3.6V$ 45Digital Ports (SYNC, SHUTDOWN, and RESET)HIGH Output Voltage $I_{SOURCE} = 40 \mu A$ 2.4LOW Output Voltage $I_{SINK} = 3.6 m A$ 2.4HIGH Input Current $V_{IH} = 2.4 V$ VIII. = 0.4VLOW Input Current $V_{IL} = 0.4 V$ VIII. = 0.4VSHUTDOWN Delay to Output $V_{INCE} = 0.4 V$ 90Current Limit Comparator Section (Note 6)90Sense Voltage $R_S \le 50 \Omega$ 90Input Bias Current $I_{INCE} = 0.4 V$ 90Delay to Output (Note 9) $I_{INCE} = 0.4 V$ 50Output Drivers (each output) (Note 7) $I_{INCE} = 0.4 V$ 50Output Drivers (each output) (Note 7) $I_{INCE} = 0.4 V$ 12.3	•									
Maximum Duty Cycle $V_{COMPENSATION} = 3.6V$ 45Digital Ports (SYNC, SHUTDOWN, and RESET)1HIGH Output Voltage $I_{SOURCE} = 40\mu A$ 2.4LOW Output Voltage $I_{SINK} = 3.6mA$ 4HIGH Input Current $V_{IH} = 2.4V$ 4LOW Input Current $V_{IL} = 0.4V$ 4SHUTDOWN Delay to Output(Note9)Current Limit Comparator Section (Note 6)5Sense Voltage $R_S \le 50\Omega$ 90Input Bias CurrentPolay to Output (Note 9)Soft-Start SectionRESET = 0.4V50Cy Charging CurrentRESET = 2.4V50Output Drivers (each output) (Note 7)1HIGH Output Voltage $I_{SOURCE} = 20mA$ 12.3		0			0	%				
$\begin{array}{ c c c } \hline \textbf{Digital Ports} & \hline{\textbf{SYNC}, \textbf{SHUTDOWN}, \textbf{and RESET}} \\ \hline \textbf{HIGH Output Voltage} & \textbf{I}_{\text{SOURCE}} = 40 \mu \text{A} \\ \hline \textbf{LOW Output Voltage} & \textbf{I}_{\text{SINK}} = 3.6 \text{mA} \\ \hline \textbf{HIGH Input Current} & \textbf{V}_{\text{IH}} = 2.4 \text{V} \\ \hline \textbf{LOW Input Current} & \textbf{V}_{\text{IL}} = 0.4 \text{V} \\ \hline \textbf{SHUTDOWN Delay to Output} & \textbf{(Note9)} \\ \hline \hline \textbf{Current Limit Comparator Section} & \textbf{(Note 6)} \\ \hline \textbf{Sense Voltage} & \textbf{R}_{\text{S}} \leq 50 \Omega & \textbf{90} \\ \hline \textbf{Input Bias Current}} & \textbf{Delay to Output} & \textbf{(Note 9)} \\ \hline \textbf{Soft-Start Section} & \hline \\ \hline \textbf{Error Clamp Voltage} & \hline \textbf{RESET} = 0.4 \text{V} \\ \hline \textbf{C}_{\text{S}} & \textbf{Charging Current} & \hline \textbf{RESET} = 2.4 \text{V} \\ \hline \textbf{Output Drivers (each output)} & \textbf{(Note 7)} \\ \hline \textbf{HIGH Output Voltage} & \hline \textbf{I}_{\text{SOURCE}} = 20 \text{mA} & \textbf{12.8} \\ \hline \end{array}$	5 49		45	49		%				
HIGH Output Voltage $I_{SOURCE} = 40 \mu A$ 2.4 LOW Output Voltage $I_{SINK} = 3.6 \text{mA}$ 4 HIGH Input Current $V_{IH} = 2.4 \text{V}$ 5 LOW Input Current $V_{IL} = 0.4 \text{V}$ 5 SHUTDOWN Delay to Output (Note9) 6 Current Limit Comparator Section (Note 6) 8 90 Sense Voltage $R_S \le 50 \Omega$ 90 Input Bias Current 90 90 Delay to Output (Note 9) 90 Soft-Start Section Error Clamp Voltage RESET = 0.4 V C_S Charging Current RESET = 2.4 V 50 Output Drivers (each output) (Note 7) HIGH Output Voltage $I_{SOURCE} = 20 \text{mA}$ 12.4										
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4 4		2.4	4		V				
HIGH Input Current $V_{H} = 2.4V$ LOW Input Current $V_{IL} = 0.4V$ SHUTDOWN Delay to Output (Note9) Current Limit Comparator Section (Note 6) Sense Voltage $R_{S} \le 50\Omega$ 90 Input Bias Current Delay to Output (Note 9) Soft-Start Section Error Clamp Voltage $RESET = 0.4V$ $RESET = 2.4V$ 50 Output Drivers (each output) (Note 7) HIGH Output Voltage $RESET = 2.00$ 12.3	0.2	0.4		0.2	0.4	V				
LOW Input Current $V_{IL}^{IL} = 0.4V$ SHUTDOWN Delay to Output(Note9)Current Limit Comparator Section (Note 6)Sense Voltage $R_S \le 50\Omega$ Input Bias Current90Delay to Output (Note 9)90Soft-Start SectionError Clamp Voltage $RESET = 0.4V$ C_S Charging Current $RESET = 0.4V$ Output Drivers (each output) (Note 7)HIGH Output Voltage $I_{SOURCE} = 20mA$ 12.3	-125			-125	-200	μΑ				
	-225			-225	-360	μΑ				
		200			200	ns				
Sense Voltage $R_s \le 50\Omega$ 90 Input Bias Current Delay to Output (Note 9) Soft-Start Section Error Clamp Voltage $RESET = 0.4V$ $RESET = 2.4V$ 50 Output Drivers (each output) (Note 7) HIGH Output Voltage $I_{SOURCE} = 20\text{mA}$ 12.3			<u> </u>							
Input Bias Current	100	110	80	100	120	mV				
Delay to Output (Note 9) RESET = 0.4V Error Clamp Voltage RESET = 0.4V C _s Charging Current RESET = 2.4V Output Drivers (each output) (Note 7) HIGH Output Voltage I _{SOURCE} = 20mA 12.3	-3	-10		-3	-10	μΑ				
Soft-Start Section Error Clamp Voltage RESET = 0.4V C _s Charging Current RESET = 2.4V 50 Output Drivers (each output) (Note 7) HIGH Output Voltage I _{SOURCE} = 20mA 12.4		400			400	ns				
Error Clamp Voltage RESET = 0.4V C_s Charging Current RESET = 2.4V 50 Output Drivers (each output) (Note 7) HIGH Output Voltage I_{SOURCE} = 20mA 12.4										
C_s Charging Current $\overline{RESET} = 2.4V$ 50Output Drivers (each output) (Note 7)HIGH Output Voltage $I_{SOURCE} = 20\text{mA}$ 12.4	0.1	0.4.		0.1	0.4.	V				
Output Drivers (each output) (Note 7) HIGH Output Voltage I _{SOURCE} = 20mA 12.4		150	50	100	150	μΑ				
HIGH Output Voltage $I_{SOURCE} = 20 \text{mA}$ 12.										
$I_{\text{pourper}} = 100\text{mA}$.5 13.5		12.5	13.5		V				
			12	13		V				
LOW Output Voltage $I_{SINK}^{SOURCE} = 20 \text{mA}$	0.2	0.3	L -	0.2	0.3	V				
I _{SINK} = 100mA	1.2	2		1.2	2	V				
Collector Leakage $V_c = 40V$	50	150		50	150	μΑ				
Rise Time $C_1 = 1000 pF$	0.3	0.4		0.3	0.4	μs				
Fall Time C ₁ = 1000pF	1 0.5	0.15		0.1	0.15	μs				
Power Consumption Section (Note 8)										
Standby Current SHUTDOWN = 0.4V	0.3									
Note 7. V ₀ = 15V		30		,						

Note 3. I_L = 0mA Note 4. F_{OSC} = 40KHz (R_{_T}=4.12K\Omega\pm1\%, C_{_T}=.01\mu\text{F}\pm1\%, R_{_D}=0\Omega) Note 5. V_{CM}=0 to 5.2V Note 6. V_{CM}=0 to 12V

Note 7. $V_{\rm C}=15{\rm V}$ Note 8. $V_{\rm IN}=35{\rm V}$ Note 9. These parameters, although guaranteed over the recommended operating conditions, are not tested in production.

CHARACTERISTIC CURVES

REFERENCE VOLTAGE VS. SUPPLY VOLTAGE

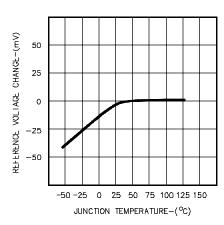


FIGURE 2. REFERENCE TEMPERATURE STABILITY

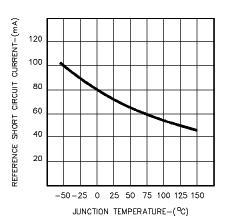
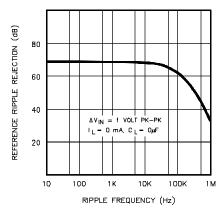



FIGURE 3. REFERENCE SHORT CIRCUIT

REFERENCE RIPPLE REJECTION

FIGURE 1.

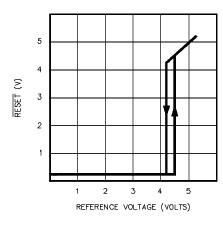
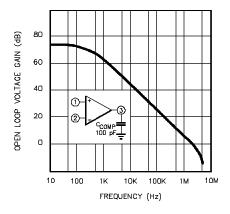
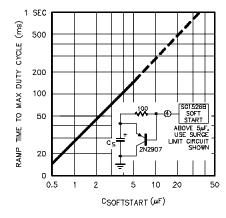
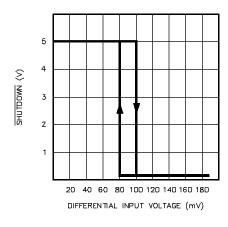
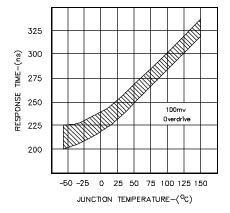


FIGURE 5. UNDER VOLTAGE LOCKOUT


FIGURE 6. ERROR AMPLIFIER OPEN LOOP GAIN VS. FREQUENCY

SOFTSTART TIME CONSTANT VS. C_S

CURRENT LIMIT TRANSFER FUNCTION

COMPARATOR INPUT TO DRIVER OUTPUT DELAY

CHARACTERISTIC CURVES (continued)

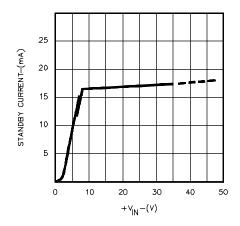


FIGURE 10. STANDBY CURRENT VS. SUPPLY VOLTAGE

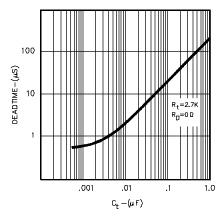


FIGURE 11.
OUTPUT DRIVER DEADTIME VS. C_T VALUE

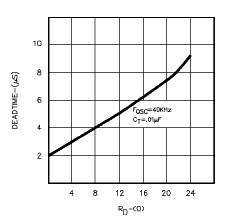
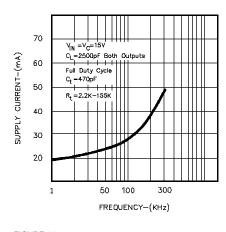



FIGURE 12.
OUTPUT DRIVER DEADTIME VS. R_n VALUE

FIGURE 13. SUPPLY CURRENT VS. OUTPUT FREQUENCY

SUPPLY CURRENT VS. OUTPUT FREQUENCY

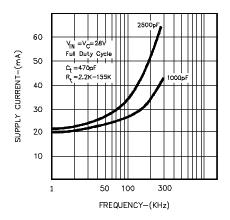
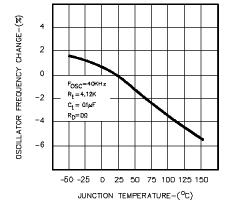



FIGURE 15. SUPPLY CURRENT VS. OUTPUT FREQUENCY

OSCILLATOR FREQUENCY TEMPERATURE STABILITY

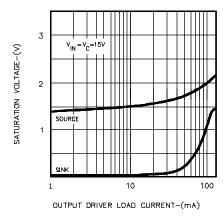


FIGURE 17.
OUTPUT DRIVER SATURATION VOLTAGE

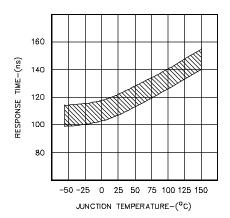
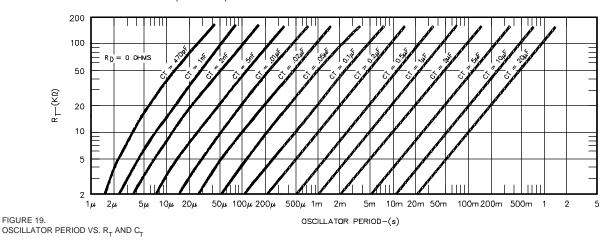



FIGURE 18. SHUTDOWN INPUT TO DRIVER OUTPUT DELAY

CHARACTERISTIC CURVES (continued)

APPLICATION INFORMATION

VOLTAGE REFERENCE

The reference regulator of the SG1526B is a "band-gap" type; that is, the precision +5 volt output is derived from the very predictable base-emitter voltage of an NPN transistor. Since this is a sub-surface phenomenon, the resulting output exhibits excellent stability compared to earlier surface-breakdown zener designs.

The reference output is stabilized at input voltages as low as +8 volts, and can provide up to 20mA of load current to external circuitry. An external PNP transistor can be used to boost the available current to many hundreds of mA. A rugged low-frequency audiotype transistor should be used, and lead lengths between the PWM and transistor should be as short as possible to minimize the risk of oscillation.

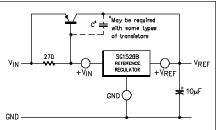


FIGURE 20.
EXTENDING REFERENCE OUTPUT CURRENT

UNDERVOLTAGE LOCKOUT

The undervoltage lockout circuit protects the SG1526B and the power devices it controls from inadequate supply voltage. If $+V_{IN}$ is too low, the circuit disables the output drivers and holds the RESET pin LOW. This prevents spurious output pulses while the control circuitry is stabilizing, and holds the soft-start timing capacitor in a discharged state.

The circuit consists of a merged bandgap reference and comparator circuit which is active when the reference voltage has risen to $2V_{\rm BE}$ or 1.2 volts at 25°C. When the reference voltage rises to approximately +4.4 volts, the circuit enables the output drivers and releases the RESET pin, allowing a normal softstart. The comparator has 200mV of hysteresis to minimize oscillation at the trip point. When +V $_{\rm IN}$ to the PWM is removed and the reference drops to +4.2 volts, the undervoltage circuit pulls RESET LOW again. The soft-start capacitor is immediately discharged, and the PWM is ready for another soft-start cycle

The SG1526B can operate from a +5 volt supply regulated to within $\pm 4\%$ by connecting the V_{REF} pin to the $+V_{IN}$ pin.

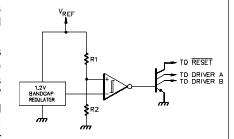


FIGURE 21. SIMPLIFIED UNDERVOLTAGE LOCKOUT

SOFT-START CIRCUIT

The soft-start circuit protects the power transistors and rectifier diodes from high current surges during power supply turn-on. When supply voltage is first applied to the SG1526B, the undervoltage lockout circuit holds $\overline{\text{RESET}}$ LOW with Q3. Q1 is turned on, which holds the soft-start capacitor voltage at zero. The second collector of Q1 clamps the output of the error amplifier to ground, guaranteeing zero duty cycle at the driver outputs. When the supply voltage reaches normal operating range, $\overline{\text{RESET}}$ will go HIGH. Q1 turns off, allowing the internal $100\mu\text{A}$ current source to charge C_{S} . Q2 clamps the error amplifier output to 1.0 V_{BE} above the voltage on C_{S} . As the soft-start voltage ramps up to +5 volts, the duty cycle of the PWM linearly increases to whatever value the voltage regulation loop requires for an error null. Figure 7 gives the timing relationship between C_{s} ramp time to 100% duty cycle.

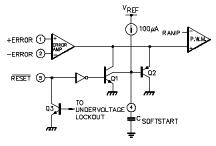


FIGURE 22. SOFT-START CIRCUIT SCHEMATIC

APPLICATION INFORMATION (continued)

DIGITAL CONTROL PORTS

The three digital control ports of the SG1526B are bidirectional. Each pin can drive TTL and 5 volt CMOS logic directly, up to a fan-out of 10 low-power Schottky gates. Each pin can also be directly driven by open-collector TTL, open-drain CMOS, and open-collector voltage comparators, fan-in is equivalent to 1 low-power Schottky gate. Each port is normally HIGH; the pin is pulled LOW to activate the particular function. Driving SYNC LOW initiates a discharge cycle in the oscillator. Pulling SHUTDOWN LOW immediately inhibits all PWM output pulses. Holding RESET LOW discharges the soft-start capacitor. The logic threshold is +1.1 volts at +25°C. Noise immunity can be gained at the expense of fan-out with an external 2K pull-up resistor to +5 volts.

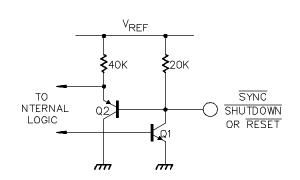


FIGURE 23 DIGITAL CONTROL PORT SCHEMATIC

OSCILLATOR

The oscillator is programmed for frequency and dead time with three components: $R_{\scriptscriptstyle T}$ $C_{\scriptscriptstyle T}$, and $R_{\scriptscriptstyle D}$. Two waveforms are generated: a sawtooth waveform at pin 10 for pulse width modulation, and a logic clock at pin 12. The following procedure is recommended for choosing timing values:

- 1. With $R_D = 0\Omega$ (pin 11 shorted to ground) select values for R_T and C_T from Figure 19 to give the desired oscillator period. Remember that the frequency at each driver output is half the oscillator frequency, and the frequency at the +V_C terminal is the same as the oscillator frequency.
- 2. If more dead time is required, select a larger value of $R_{\rm D}$ using Figure 14 as a guide. At 40 KHz dead time increases by 300 ns/ Ω .
- 3. Increasing the dead time will cause the oscillator frequency to decrease slightly. Go back and decrease the value of $R_{\scriptscriptstyle T}$ slightly to bring the frequency back to the nominal design value.

The SG1526B can be synchronized to an external logic clock by programming the oscillator to free-run at a frequency 10% slower than the sync frequency. A periodic LOW logic pulse approximately 0.5 μ Sec wide at the $\overline{\text{SYNC}}$ pin will then lock the oscillator to the external frequency.

Multiple devices can be synchronized together by programming one master unit for the desired frequency, and then sharing its sawtooth and clock waveforms with the slave units. All $C_{\scriptscriptstyle T}$ terminals are connected to the $C_{\scriptscriptstyle T}$ pin of the master, and all $\overline{\text{SYNC}}$ terminals are likewise connected to the $\overline{\text{SYNC}}$ pin of the master. Slave $R_{\scriptscriptstyle T}$ terminals should not be left open; at least 50K should be connected from each pin to ground. Slave $R_{\scriptscriptstyle D}$ terminals may be either left open or grounded.

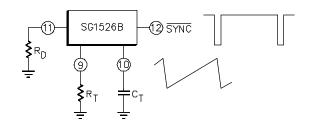
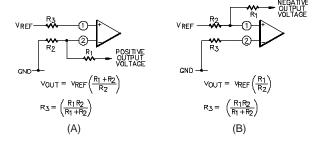


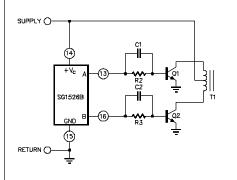
FIGURE 24. OSCILLATOR CONNECTIONS ANDD WAVEFORMS

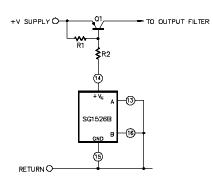
ERROR AMPLIFIER

The error amplifier is a transconductance design, with an output impedance of 2 megohms. Since all voltage gain takes place at the output pin, the open-loop gain/frequency characteristics can be controlled with shunt reactance to ground. When compensated for unity-gain stability with 100 pF, the amplifier has an open-loop pole at 400 Hz.

The input connections to the error amplifier and determined by the polarity of the switching supply output voltage. For positive supplies, the common-mode voltage is +5.0 volts and the feedback connections in Figure 25A are used. With negative supplies, the common-mode voltage is ground and the feedback divider is connected between the negative output and the +5.0 volt reference voltage, as shown in Figure 25B.




FIGURE 25. ERROR AMPLIFIER CONNECTIONS


APPLICATION INFORMATION (continued)

OUTPUT DRIVERS

The totem-pole output drivers of the SG1526B are designed to source and sink 100mA continuously and 200mA peak. Loads can be driven either from the output pins 13 and 16,

or from the $+\rm V_{\rm C}$ pin, as required. Curves for the saturation voltage at these outputs as a function of load current are found in Figure 17.

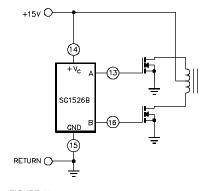
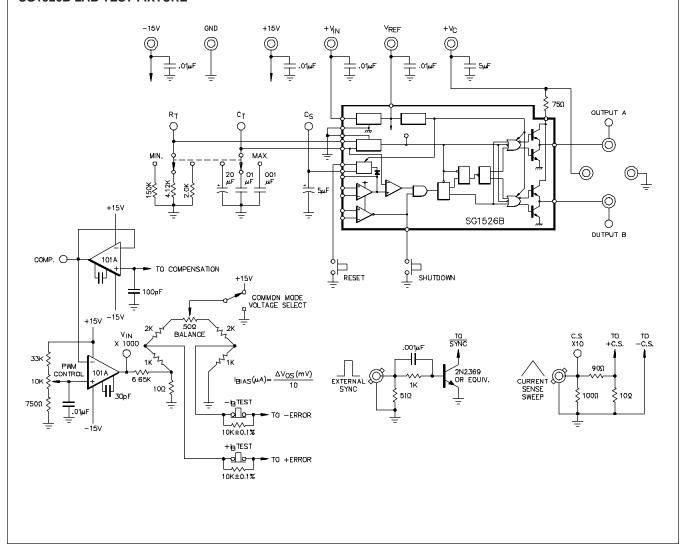



FIGURE 26. PUSH-PULL CONFIGURATION

FIGURE 27. SINGLE-ENDED CONFIGURATION

FIGURE 28.
DRIVING N-CHANNEL POWER MOSFETS

SG1526B LAB TEST FIXTURE

CONNECTION DIAGRAMS & ORDERING INFORMATION (See Notes Below)

Package	Part No.	Ambient Femperature Range	Connection Diagram
18-PIN CERAMIC DIP J - PACKAGE	SG1526BJ/883B JAN1526BJ SG1526BJ/DESC SG1526BJ SG2526BJ SG3526BJ	-55°C to 125°C -55°C to 125°C -55°C to 125°C -55°C to 125°C -55°C to 125°C 0°C to 70°C	+ ERROR
18-PIN PLASTIC DIP N - PACKAGE	SG2526BN SG3526BN	-25°C to 85°C 0°C to 70°C	R _T Q 9 10 C _T N Package: RoHS Compliant / Pb-free Transition DC: 0503 N Package: RoHS / Pb-free 100% Matte Tin Lead Finish
18-PIN WIDE BODY PLASTIC S.O.I.C. DW - PACKAGE	SG2526BDW SG3526BDW	-25°C to 85°C 0°C to 70°C	+ERROR
20-PIN CERAMIC LEADLESS CHIP CARRIER L- PACKAGE	SG1526BL/883B SG1526BL	-55°C to 125°C -55°C to 125°C	1. N.C. 2. +ERROR 3ERROR 4. COMP 5. C_SOFTSTART 6. RESET 7C.S. 8. + C.S. 9. SHUTDOWN 10. R _T 3 2 1 20 19 11. C _T 12. R_DEADTIME 13. SYNC 17 14. OUTPUT A 16. N.C. 15. +V_COLLECTOR 16. N.C. 15 17. GROUND 14 18. OUTPUT B 19. +V _{IN} 20. V _{REF}

Note 1. Contact factory for JAN and DESC product availability.

2. All parts are viewed from the top.