

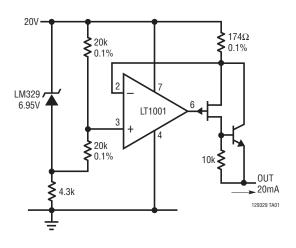
6.9V Precision Voltage Reference

FEATURES

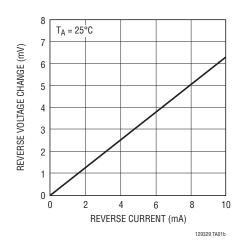
- Guaranteed 10ppm/°C Temperature Coefficient
- Guaranteed 1Ω Maximum Dynamic Impedance
- Guaranteed 20µV Maximum Wideband Noise
- Wide Operating Current Range: 0.6mA to 15mA

APPLICATIONS

- Transducers
- A/D and D/A Converters
- Calibration Standards
- Instrumentation Reference

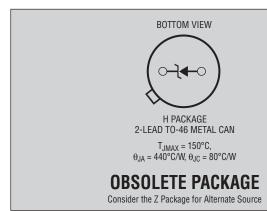

DESCRIPTION

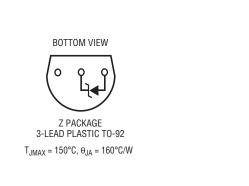
The LM129 temperature compensated 6.9V Zener references provide excellent stability over time and temperature, very low dynamic impedance and a wide operating current range. The device achieves low dynamic impedance by incorporating a high gain shunt regulator around the Zener. The excellent noise performance of the device is achieved by using a "buried Zener" design which eliminates surface noise phenomenon associated with ordinary Zeners. To serve a wide variety of applications, the LM129 is available in several temperature coefficient grades and two package styles. A 20mA positive current source application is shown below.


LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

20mA Positive Current Source


Reverse Voltage Change



ABSOLUTE MAXIMUM RATINGS (Note 1)

Operating Temperature Range	
LM129 (OBSOLETE)	–55°C to 125°C
LM329	0°C to 70°C
Storage Temperature Range	–65°C to 150°C

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LM129AH#PBF	LM129AH#TRPBF	LM129AH	2-Lead Plastic TO-46 Metal Can	−55°C to 125°C
LM129BH#PBF	LM129BH#TRPBF	LM129BH	2-Lead Plastic TO-46 Metal Can	−55°C to 125°C
LM129CH#PBF	LM129CH#TRPBF	LM129CH	2-Lead Plastic TO-46 Metal Can	−55°C to 125°C
LM329AH#PBF	LM329AH#TRPBF	LM329AH	2-Lead Plastic TO-46 Metal Can	0°C to 70°C
LM329BH#PBF	LM329BH#TRPBF	LM329BH	2-Lead Plastic TO-46 Metal Can	0°C to 70°C
LM329CH#PBF	LM329CH#TRPBF	LM329CH	2-Lead Plastic TO-46 Metal Can	0°C to 70°C
LM329DH#PBF	LM329DH#TRPBF	LM329DH	2-Lead Plastic TO-46 Metal Can	0°C to 70°C
LM329AZ#PBF	LM329AZ#TRPBF	LM329AZ	3-Lead Plastic TO-92	0°C to 70°C
LM329BZ#PBF	LM329BZ#TRPBF	LM329BZ	3-Lead Plastic TO-92	0°C to 70°C
LM329CZ#PBF	LM329CZ#TRPBF	LM329CZ	3-Lead Plastic TO-92	0°C to 70°C
LM329DZ#PBF	LM329DZ#TRPBF	LM329DZ	3-Lead Plastic TO-92	0°C to 70°C

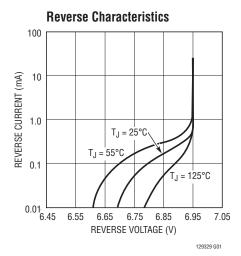
Contact LTC Marketing for availability of LM329AZ, LM329CZ and LM329DZ.

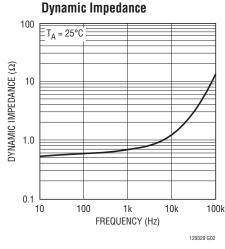
Consult LTC Marketing for parts specified with wider operating temperature ranges.

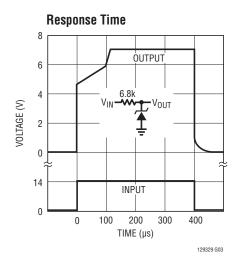
Consult LTC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

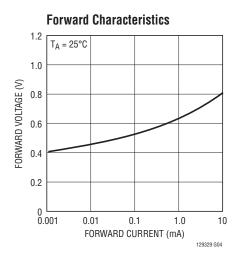

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. (Note 2)

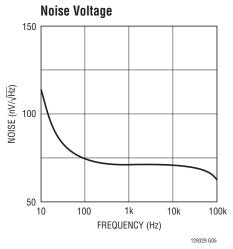

SYMBOL	PARAMETER	CONDITIONS		l	LM129A, 129B/LM1 Typ			29A/LM3 29C/LM3 TYP		UNITS
V_Z	Reverse-Breakdown Voltage	$T_A = 25$ °C, 0.6 mA $\le I_R \le 15$ mA		6.7	6.9	7.2	6.6	6.9	7.25	V
$\frac{\Delta V_Z}{\Delta I_R}$	Reverse-Breakdown Voltage Change with Current	$T_A = 25$ °C, 0.6 mA $\leq I_R \leq 15$ mA 1 mA $\leq I_R \leq 15$ mA	•		9 12	14		9 12	20	mV mV
$\Delta V_Z \over \Delta Temp$	Temperature Coefficient	I _R = 1mA, LM129A/LM329A LM129B/LM329B LM129C/LM329C LM329D	•		6 15 30	10 20 50		6 15 30 50	10 20 50 100	ppm/°C ppm/°C ppm/°C ppm/°C
	Change in Temperature Coefficient	1mA ≤ I _R ≤ 15mA	•		1			1		ppm/°C
r _Z	Dynamic Impedance	$T_A = 25$ °C, $I_R = 1$ mA 1 mA $\leq I_R \leq 15$ mA	•		0.6 0.8	1		0.8 1	2	Ω
e _n	RMS Noise	$T_A = 25$ °C, $10Hz \le f \le 10kHz$			7	20		7	100	μV
$\Delta V_Z \over \Delta Time$	Long-Term Stability	$T_A = 45$ °C ±0.1°C, $I_R = 1$ mA ±0.3%			20			20		ppm/kHr

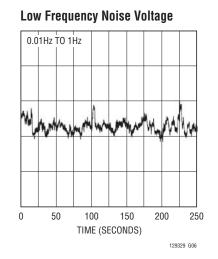

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: To determine the junction temperature as a function of the ambient temperature, see θ_{JA} for each package.

TYPICAL PERFORMANCE CHARACTERISTICS

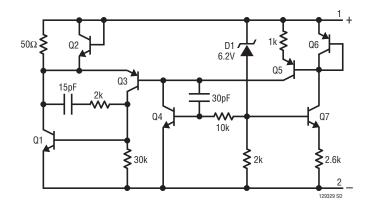


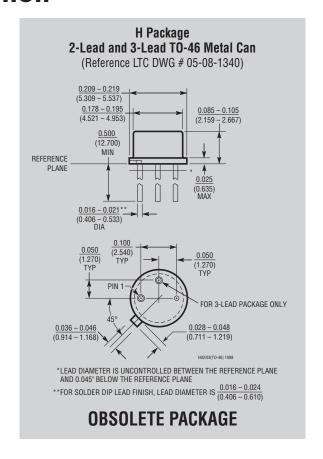




129329fc

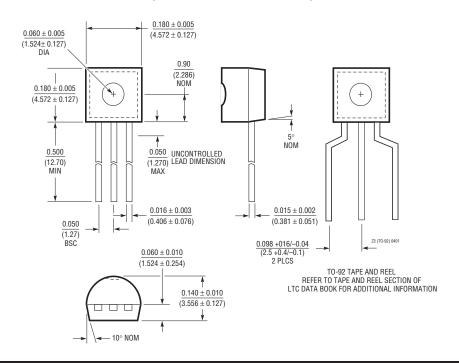
TYPICAL PERFORMANCE CHARACTERISTICS





NOISE (10µV/DIV)

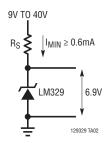
SCHEMATIC DIAGRAM



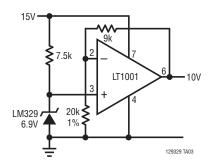
PACKAGE DESCRIPTION

Z Package 3-Lead TO-92 (Similar to TO-226)

(Reference LTC DWG # 05-08-1410)



129329fc



TYPICAL APPLICATION

Common Reference

Buffered Reference Using a Single Supply

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS				
LT®1460	Micropower, Precise Series Reference	10ppm/°C, Output Voltages: 2.5V, 3V, 3.3V, 5V, 10V				
LT1634	0.05% Accurate, 10ppm/°C, Shunt Reference	e, 10ppm/°C, Shunt Reference Output Voltages: 1.25V, 2.5V, 4.096V, 5V				