Features

- Serial Peripheral Interface (SPI) Compatible
- Supports SPI Modes $0(0,0)$ and $3(1,1)$
- Low-voltage and Standard-voltage Operation
$-2.7\left(\mathrm{~V}_{\mathrm{cc}}=2.7 \mathrm{~V}\right.$ to 5.5 V$)$
- $1.8\left(\mathrm{~V}_{\mathrm{cc}}=1.8 \mathrm{~V}\right.$ to 5.5 V$)$
- 20 MHz Clock Rate (5V)
- 64-byte Page Mode and Byte Write Operation
- Block Write Protection
- Protect $1 / 4,1 / 2$, or Entire Array
- Write Protect ($\overline{\mathrm{WP}}$) Pin and Write Disable Instructions for Both Hardware and Software Data Protection
- Self-timed Write Cycle (5 ms Max)
- High-reliability
- Endurance: 100,000 Write Cycles
- Data Retention: >100 Years
- Automotive Grade, Extended Temperature and Lead-free/Halogen-free Devices Available
- 8-lead PDIP, 8-lead EIAJ SOIC, 8-lead JEDEC SOIC, 8-lead TSSOP and 8 -ball dBGA2 ${ }^{\text {TM }}$ Packages

Description

The AT25128A/256A provides 131,072/262,144 bits of serial electrically-erasable programmable read only memory (EEPROM) organized as 16,384/32,768 words of 8 bits each. The device is optimized for use in many industrial and commercial applications where low-power and low-voltage operation are essential. The devices are available in space saving 8-lead PDIP, 8-lead EIAJ SOIC, 8-lead JEDEC SOIC, 8-lead TSSOP and 8-ball dBGA2 packages. In addition, the entire family is available in 2.7 V (2.7V to 5.5 V) and $1.8 \mathrm{~V}(1.8 \mathrm{~V}$ to 5.5 V$)$ versions.

The AT25128A/256A is enabled through the Chip Select pin ($\overline{\mathrm{CS}}$) and accessed via a 3-wire interface consisting of Serial Data Input (SI), Serial Data Output (SO), and Serial Clock (SCK). All programming cycles are completely self-timed, and no separate ERASE cycle is required before WRITE.

Pin Configurations

Pin Name	Function
$\overline{\text { CS }}$	Chip Select
SCK	Serial Data Clock
SI	Serial Data Input
SO	Serial Data Output
GND	Ground
VCC	Power Supply
$\overline{\text { WP }}$	Write Protect
$\overline{\text { HOLD }}$	Suspends Serial Input
NC	No Connect
DC	Don't Connect

Bottom View
8-lead PDIP

8-lead SOIC

SPI Serial EEPROMs

128K ($16,384 \times 8$)
256K (32,768 x 8)

AT25128A
AT25256A

Preliminary

BLOCK WRITE protection is enabled by programming the status register with top $1 / 4$, top $1 / 2$ or entire array of write protection. Separate program enable and program disable instructions are provided for additional data protection. Hardware data protection is provided via the WP pin to protect against inadvertent write attempts to the status register. The HOLD pin may be used to suspend any serial communication without resetting the serial sequence.

Absolute Maximum Ratings*

Operating Temperature..............................$~$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin
with Respect to Ground-1.0V to +7.0 V
Maximum Operating Voltage ... 6.25 V
DC Output Current.. 5.0 mA

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Block Diagram

Pin Capacitance ${ }^{(1)}$

Applicable over recommended operating range from $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$ (unless otherwise noted).

Symbol	Test Conditions	Max	Units	Conditions
$\mathrm{C}_{\text {OUT }}$	Output Capacitance (SO)	8	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
C_{IN}	Input Capacitance $(\overline{\mathrm{CS}}, \mathrm{SCK}, \mathrm{SI}, \overline{\mathrm{WP}, \overline{\mathrm{HOLD}})}$	6	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$

Note: 1. This parameter is characterized and is not 100% tested.

DC Characteristics

Applicable over recommended operating range from $\mathrm{T}_{\mathrm{AI}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+1.8 \mathrm{~V}$ to +5.5 V ,
$T_{A E}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+1.8 \mathrm{~V}$ to +5.5 V (unless otherwise noted).

Symbol	Parameter	Test Condition		Min	Typ	Max	Units
$\mathrm{V}_{\mathrm{CC} 1}$	Supply Voltage			1.8		5.5	V
$\mathrm{V}_{\mathrm{CC} 2}$	Supply Voltage			2.7		5.5	V
$\mathrm{V}_{\mathrm{CC} 3}$	Supply Voltage			4.5		5.5	V
$\mathrm{I}_{\mathrm{CC} 1}$	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { at } 20 \mathrm{MHz}, \mathrm{SO}=\text { Open, } \\ & \text { Read } \end{aligned}$			8.0	10.0	mA
$\mathrm{I}_{\mathrm{CC2}}$	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \text { at } 10 \mathrm{MHz}, \\ & \mathrm{SO}=\text { Open, Read, Write } \end{aligned}$			5.0	7.0	mA
$\mathrm{I}_{\text {SB1 }}$	Standby Current	$\mathrm{V}_{C C}=1.8 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}$			0.2	3.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SB2 }}$	Standby Current	$\mathrm{V}_{C C}=2.7 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}$			0.5	3.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SB3 }}$	Standby Current	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}}$			2.0	5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Leakage	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}		-3.0		3.0	$\mu \mathrm{A}$
I_{OL}	Output Leakage	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{AC}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		-3.0		3.0	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{IL}}{ }^{(1)}$	Input Low-voltage			-1.0		$\mathrm{V}_{\mathrm{CC}} \times 0.3$	V
$\mathrm{V}_{\mathrm{IH}}{ }^{(1)}$	Input High-voltage			$\mathrm{V}_{\mathrm{CC}} \times 0.7$		$\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {OL1 }}$	Output Low-voltage	$4.5 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=3.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\mathrm{OH} 1}$	Output High-voltage		$\mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-0.8$			V
$\mathrm{V}_{\mathrm{OL} 2}$	Output Low-voltage	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	$\mathrm{I}_{\mathrm{OL}}=0.15 \mathrm{~mA}$			0.2	V
$\mathrm{V}_{\mathrm{OH} 2}$	Output High-voltage		$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{C C}-0.2$			V

Note: 1. V_{IL} and V_{IH} max are reference only and are not tested.

AC Characteristics

Applicable over recommended operating range from $T_{A I}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{AE}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=$ As Specified, CL = 1 TTL Gate and 30 pF (unless otherwise noted).

Symbol	Parameter	Voltage	Min	Max	Units
$\mathrm{f}_{\text {Sck }}$	SCK Clock Frequency	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 20 \\ 10 \\ 5 \end{gathered}$	MHz
$t_{\text {RI }}$	Input Rise Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\mu \mathrm{s}$
t_{Fl}	Input Fall Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\mu \mathrm{s}$
$\mathrm{t}_{\text {WH }}$	SCK High Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$		ns

AC Characteristics (Continued)
Applicable over recommended operating range from $\mathrm{T}_{\mathrm{Al}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{AE}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=$ As Specified, CL = 1 TTL Gate and 30 pF (unless otherwise noted).

Symbol	Parameter	Voltage	Min	Max	Units
$\mathrm{t}_{\text {WL }}$	SCK Low Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$		ns
t_{cs}	$\overline{\mathrm{CS}}$ High Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$	$\begin{gathered} 25 \\ 50 \\ 100 \end{gathered}$		ns
$\mathrm{t}_{\text {css }}$	$\overline{\mathrm{CS}}$ Setup Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$	$\begin{gathered} 25 \\ 50 \\ 100 \end{gathered}$		ns
$\mathrm{t}_{\mathrm{CSH}}$	$\overline{\mathrm{CS}}$ Hold Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$	$\begin{gathered} 25 \\ 50 \\ 100 \end{gathered}$		ns
$t_{\text {su }}$	Data In Setup Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$	$\begin{gathered} 25 \\ 50 \\ 100 \end{gathered}$		ns
t_{H}	Data In Hold Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$	$\begin{gathered} 25 \\ 50 \\ 100 \end{gathered}$		ns
t_{HD}	Hold Setup Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$	$\begin{gathered} 25 \\ 50 \\ 100 \end{gathered}$		ns
t_{CD}	Hold Hold Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$	$\begin{gathered} 25 \\ 50 \\ 100 \end{gathered}$		ns
t_{V}	Output Valid	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$	ns
t_{HO}	Output Hold Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		ns
$t_{\text {LZ }}$	Hold to Output Low Z	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 25 \\ 50 \\ 100 \end{gathered}$	ns
t_{Hz}	Hold to Output High Z	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$		$\begin{gathered} 25 \\ 50 \\ 100 \\ \hline \end{gathered}$	ns
$t_{\text {DIS }}$	Output Disable Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$		$\begin{gathered} 25 \\ 50 \\ 100 \end{gathered}$	ns
$t_{\text {wc }}$	Write Cycle Time	$\begin{aligned} & 4.5-5.5 \\ & 2.7-5.5 \\ & 1.8-5.5 \end{aligned}$		$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	ms
Endurance ${ }^{(1)}$	$5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$, Page Mode		100K		Write Cycles

Note: 1. This parameter is characterized and is not 100% tested. Contact Atmel for further information.

Serial Interface Description

MASTER: The device that generates the serial clock.
SLAVE: Because the Serial Clock pin (SCK) is always an input, the AT25128A/256A always operates as a slave.
TRANSMITTER/RECEIVER: The AT25128A/256A has seperate pins designated for data transmission (SO) and reception (SI).

MSB: The Most Significant Bit (MSB) is the first bit transmitted and received.
SERIAL OP-CODE: After the device is selected with $\overline{\mathrm{CS}}$ going low, the first byte will be received. This byte contains the op-code that defines the operations to be performed.

INVALID OP-CODE: If an invalid op-code is received, no data will be shifted into the AT25128A/256A, and the serial output pin (SO) will remain in a high impedance state until the falling edge of $\overline{C S}$ is detected again. This will reinitialize the serial communication.

CHIP SELECT: The AT25128A/256A is selected when the $\overline{C S}$ pin is low. When the device is not selected, data will not be accepted via the SI pin, and the serial output pin (SO) will remain in a high impedance state.

HOLD: The $\overline{H O L D}$ pin is used in conjunction with the $\overline{C S}$ pin to select the AT25128A/256A. When the device is selected and a serial sequence is underway, $\overline{\text { HOLD can be used to pause the serial communication with the master device without }}$ resetting the serial sequence. To pause, the HOLD pin must be brought low while the SCK pin is low. To resume serial communication, the HOLD pin is brought high while the SCK pin is low (SCK may still toggle during HOLD). Inputs to the SI pin will be ignored while the SO pin is in the high impedance state.
WRITE PROTECT: The write protect pin ($\overline{\mathrm{WP}}$) will allow normal read/write operations when held high. When the $\overline{W P}$ pin is brought low and WPEN bit is " 1 ", all write operations to the status register are inhibited. WP going low while $\overline{C S}$ is still low will interrupt a write to the status register. If the internal write cycle has already been initiated, $\overline{W P}$ going low will have no effect on any write operation to the status register. The $\overline{W P}$ pin function is blocked when the WPEN bit in the status register is " 0 ". This will allow the user to install the AT25128A/256A in a system with the WP pin tied to ground and still be able to write to the status register. All WP pin functions are enabled when the WPEN bit is set to "1".

SPI Serial Interface

Functional Description

The AT25128A/256A is designed to interface directly with the synchronous serial peripheral interface (SPI) of the 6800 type series of microcontrollers.
The AT25128A/256A utilizes an 8-bit instruction register. The list of instructions and their operation codes are contained in Table 1. All instructions, addresses, and data are transferred with the MSB first and start with a high-to-low $\overline{\mathrm{CS}}$ transition..

Table 1. Instruction Set for the AT25128A/256A

Instruction Name	Instruction Format	Operation
WREN	0000×110	Set Write Enable Latch
WRDI	0000×100	Reset Write Enable Latch
RDSR	0000×101	Read Status Register
WRSR	0000×001	Write Status Register
READ	0000×011	Read Data from Memory Array
WRITE	0000×010	Write Data to Memory Array

WRITE ENABLE (WREN): The device will power-up in the write disable state when V_{Cc} is applied. All programming instructions must therefore be preceded by a Write Enable instruction.

WRITE DISABLE (WRDI): To protect the device against inadvertent writes, the Write Disable instruction disables all programming modes. The WRDI instruction is independent of the status of the $\overline{\mathrm{WP}}$ pin.
READ STATUS REGISTER (RDSR): The Read Status Register instruction provides access to the status register. The READY/BUSY and Write Enable status of the device can be determined by the RDSR instruction. Similarly, the Block Write Protection bits indicate the extent of protection employed. These bits are set by using the WRSR instruction.

Table 2. Status Register Format

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WPEN	X	X	X	BP1	BP0	WEN	$\overline{\mathrm{RDY}}$

Table 3. Read Status Register Bit Definition

Bit	Definition
Bit $0(\overline{\mathrm{RDY}})$	Bit $0=0(\overline{\mathrm{RDY}})$ indicates the device is READY. Bit $0=1$ indicates the write cycle is in progress.
Bit 1 (WEN)	Bit $1=0$ indicates the device is not WRITE ENABLED. Bit $1=1$ indicates the device is WRITE ENABLED.
Bit 2 (BP0)	See Table 4.
Bit $3(\mathrm{BP} 1)$	See Table 4.
Bits $4-6$ are 0s when device is not in an internal write cycle.	
Bit 7 (WPEN)	See Table 5.
Bits $0-7$ are 1s during an internal write cycle.	

WRITE STATUS REGISTER (WRSR): The WRSR instruction allows the user to select one of four levels of protection. The AT25128A/256A is divided into four array segments. Top quarter (1/4), top half ($1 / 2$), or all of the memory segments can be protected. Any of the data within any selected segment will therefore be READ only. The block write protection levels and corresponding status register control bits are shown in Table 4.

The three bits, BPO, BP1, and WPEN are nonvolatile cells that have the same properties and functions as the regular memory cells (e.g. WREN, t_{wc}, RDSR).

Table 4. Block Write Protect Bits

Level	Status Register Bits		Array Addresses Protected	
	BP1	BP0	AT25128A	AT25256A
0	0	0	None	None
$1(1 / 4)$	0	1	$3000-3 F F F$	$6000-7 F F F$
$2(1 / 2)$	1	0	$2000-3 F F F$	$4000-7 F F F$
$3($ AII $)$	1	1	$0000-3 F F F$	$0000-7 F F F$

The WRSR instruction also allows the user to enable or disable the write protect ($\overline{\mathrm{WP}}$) pin through the use of the Write Protect Enable (WPEN) bit. Hardware write protection is enabled when the $\overline{W P}$ pin is low and the WPEN bit is " 1 ". Hardware write protection is disabled when eitherthe $\overline{W P}$ pin is high or the WPEN bit is "0." When the device is hardware write protected, writes to the Status Register, including the Block Protect bits and the WPEN bit, and the block-protected sections in the memory array are disabled. Writes are only allowed to sections of the memory which are not block-protected.

NOTE: When the WPEN bit is hardware write protected, it cannot be changed back to " 0 ", as long as the $\overline{\mathrm{WP}}$ pin is held low.

Table 5. WPEN Operation

WPEN	WP	WEN	Protected Blocks	Unprotected Blocks	Status Register
0	X	0	Protected	Protected	Protected
0	X	1	Protected	Writable	Writable
1	Low	0	Protected	Protected	Protected
1	Low	1	Protected	Writable	Protected
X	High	0	Protected	Protected	Protected
X	High	1	Protected	Writable	Writable

READ SEQUENCE (READ): Reading the AT25128A/256A via the SO (Serial Output) pin requires the following sequence. After the $\overline{C S}$ line is pulled low to select a device, the READ op-code is transmitted via the SI line followed by the byte address to be read (Refer to Table 6). Upon completion, any data on the SI line will be ignored. The data (D7-D0) at the specified address is then shifted out onto the SO line. If only one byte is to be read, the $\overline{C S}$ line should be driven high after the data comes out. The READ sequence can be continued since the byte address is automatically incremented and data will continue to be shifted out. When the highest address is reached, the address counter will roll over to the lowest address allowing the entire memory to be read in one continuous READ cycle.

WRITE SEQUENCE (WRITE): In order to program the AT25128A/256A, two separate instructions must be executed. First, the device must be write enabled via the Write Enable (WREN) Instruction. Then a Write (WRITE) Instruction may be executed. Also, the address of the memory location(s) to be programmed must be outside the protected address field location selected by the Block Write Protection Level. During an internal write cycle, all commands will be ignored except the RDSR instruction.

A Write Instruction requires the following sequence. After the $\overline{C S}$ line is pulled low to select the device, the WRITE op-code is transmitted via the SI line followed by the byte address and the data (D7-D0) to be programmed (Refer to Table 6). Programming will start after the $\overline{\mathrm{CS}}$ pin is brought high. (The LOW-to-High transition of the $\overline{\mathrm{CS}}$ pin must occur during the SCK low time immediately after clocking in the DO (LSB) data bit.
The READY/BUSY status of the device can be determined by initiating a READ STATUS REGISTER (RDSR) Instruction. If Bit $0=1$, the WRITE cycle is still in progress. If Bit $0=0$, the WRITE cycle has ended. Only the READ STATUS REGISTER instruction is enabled during the WRITE programming cycle.

The AT25128A/256A is capable of a 64-byte PAGE WRITE operation. After each byte of data is received, the six low order address bits are internally incremented by one; the high order bits of the address will remain constant. If more than 64 bytes of data are transmitted, the address counter will roll over and the previously written data will be overwritten. The AT25128A/256A is automatically returned to the write disable state at the completion of a WRITE cycle.
NOTE: If the device is not Write enabled (WREN), the device will ignore the Write instruction and will return to the standby state, when $\overline{\mathrm{CS}}$ is brought high. A new CS falling edge is required to re-initiate the serial communication.

Table 6. Address Key

Address	AT25128A	AT25256A
A_{N}	$\mathrm{A}_{13}-\mathrm{A}_{0}$	$\mathrm{~A}_{14}-\mathrm{A}_{0}$
Don't Care Bits	$\mathrm{A}_{15}-\mathrm{A}_{14}$	$\mathrm{~A}_{15}$

Timing Diagrams (for SPI Mode $0(0,0)$)

Synchronous Data Timing

WREN Timing

WRDI Timing

RDSR Timing

WRSR Timing

\qquad

READ Timing

WRITE Timing

HOLD Timing

AT25128A Ordering Information

Ordering Code	Package	Operation Range
AT25128A-10PI-2.7 AT25128AN-10SI-2.7 AT25128AW-10SI-2.7 AT25128AU2-10UI-2.7 AT25128A-10TI-2.7	$\begin{gathered} \hline 8 \mathrm{P} 3 \\ 8 \mathrm{~S} 1 \\ 8 \mathrm{~S} 2 \\ 8 \mathrm{U} 2-1 \\ 8 \mathrm{~A} 2 \end{gathered}$	Industrial Temperature ($-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)
AT25128A-10PI-1.8 AT25128AN-10SI-1.8 AT25128AW-10SI-1.8 AT25128AU2-10UI-1.8 AT25128A-10TI-1.8	$\begin{gathered} \text { 8P3 } \\ \text { 8S1 } \\ \text { 8S2 } \\ 8 \mathrm{U} 2-1 \\ 8 \mathrm{~A} 2 \end{gathered}$	Industrial Temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
AT25128AN-10SU-2.7 AT25128AN-10SU-1.8 AT25128A-10TU-2.7 AT25128A-10TU-1.8	$\begin{aligned} & 8 \mathrm{~S} 1 \\ & 8 \mathrm{~S} 1 \\ & 8 \mathrm{~A} 2 \\ & 8 \mathrm{~A} 2 \end{aligned}$	Lead-free/Halogen-free/ Industrial Temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
AT25128AN-10SE-2.7	8S1	High Grade/Extended Temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
AT25128AN-10SQ-2.7	8S1	Lead-free/Halogen-free/ Extended Temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$

Note: For 2.7 V devices used in the 4.5 V to 5.5 V range, please refer to performance values in the AC and DC Characteristics tables.

Package Type	
$\mathbf{8 P 3}$	8-lead, 0.300" Wide, Plastic Dual In-line Package (PDIP)
$\mathbf{8 S 1}$	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline Package (JEDEC SOIC)
$\mathbf{8 S 2}$	8-lead, 0.200" Wide, Plastic Gull Wing Small Outline Package (EIAJ SOIC)
$\mathbf{8 U 2 - 1}$	8-ball, die Ball Grid Array Package (dBGA2)
$\mathbf{8 A 2}$	8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)

Options

-2.7	Low-voltage (2.7V to 5.5 V$)$
$-\mathbf{1 . 8}$	Low-voltage $(1.8 \mathrm{~V}$ to 5.5 V$)$

AT25256A Ordering Information

Ordering Code	Package	Operation Range
AT25256A-10PI-2.7	8 P 3	
AT25256AN-10SI-2.7	8 S 1	Industrial Temperature
AT25256AW-10SI-2.7	8 S 2	$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
AT25256AU2-10UI-2.7	$8 \mathrm{U} 2-1$	
AT25256A-10TI-2.7	8 A 2	
AT25256A-10PI-1.8	8 P 3	
AT25256AN-10SI-1.8	8 S 1	$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
AT25256AW-10SI-1.8	8 S 2	
AT25256AU2-10UI-1.8	$8 \mathrm{U} 2-1$	Lead-free/Halogen-free/
AT25256A-10TI-1.8	8 A 2	Industrial Temperature
AT25256AN-10SU-2.7	8 S 1	$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
AT25256AN-10SU-1.8	8 S 1	8 A 2
AT25256A-10TU-2.7	8 A 2	High Grade/Extended Temperature
AT25256A-10TU-1.8	8 S 1	$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
AT25256AN-10SE-2.7		

Note: For 2.7 V devices used in the 4.5 V to 5.5 V range, please refer to performance values in the AC and DC Characteristics tables.

Package Type					
$\mathbf{8 P 3}$	8-lead, 0.300" Wide, Plastic Dual In-line Package (PDIP)				
$\mathbf{8 S 1}$	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline Package (JEDEC SOIC)				
$\mathbf{8 S 2}$	8-lead, 0.200" Wide, Plastic Gull Wing Small Outline Package (EIAJ SOIC)				
$\mathbf{8 U 2 - 1}$	8-ball, die Ball Grid Array Package (dBGA2)				
$\mathbf{8 A 2}$	8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)				
\quad Options					
$-\mathbf{2 . 7}$	Low-voltage (2.7V to 5.5V)				
$-\mathbf{1 . 8}$	Low-voltage (1.8V to 5.5V)				

Packaging Information

8P3 - PDIP

Top View

End View

COMMON DIMENSIONS
(Unit of Measure = inches)

SYMBOL	MIN	NOM	MAX	NOTE
A			0.210	2
A2	0.115	0.130	0.195	
b	0.014	0.018	0.022	5
b2	0.045	0.060	0.070	6
b3	0.030	0.039	0.045	6
c	0.008	0.010	0.014	
D	0.355	0.365	0.400	3
D1	0.005			3
E	0.300	0.310	0.325	4
E1	0.240	0.250	0.280	3
e	0.100 BSC			
eA	0.300 BSC			4
L	0.115	0.130	0.150	2

Notes: 1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA for additional information.
2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
4. E and eA measured with the leads constrained to be perpendicular to datum.
5. Pointed or rounded lead tips are preferred to ease insertion.
6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).

01/09/02

2325 Orchard Parkway San Jose, CA 95131	TITLE 8P3, 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP)	DRAWING NO. 8P3	$\begin{gathered} \mathrm{REV} . \\ \mathrm{B} \end{gathered}$

8S1 - JEDEC SOIC

Note: These drawings are for general information only. Refer to JEDEC Drawing MS-012, Variation AA for proper dimensions, tolerances, datums, etc.

8S1, 8-lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC)

DRAWING NO.
8S1
REV.
B

Side View
COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
A	1.70		2.16	
A1	0.05		0.25	
b	0.35		0.48	5
C	0.15		0.35	5
D	5.13		5.35	
E1	5.18		5.40	2,3
E	7.70		8.26	
L	0.51		0.85	
\varnothing	0°		8°	
e	1.27 BSC			

Notes: 1. This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information.
2. Mismatch of the upper and lower dies and resin burrs are not included.
3. It is recommended that upper and lower cavities be equal. If they are different, the larger dimension shall be regarded.
4. Determines the true geometric position.
5. Values b and C apply to $\mathrm{pb} / \mathrm{Sn}$ solder plated terminal. The standard thickness of the solder layer shall be $0.010+0.010 /-0.005 \mathrm{~mm}$.

TITLE
8S2, 8-lead, 0.209" Body, Plastic Small Outline Package (EIAJ)

DRAWING NO. REV. 8S2

C

8U2-1 - dBGA2

8 A2 - TSSOP

Top View

Side View

End View
COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
D	2.90	3.00	3.10	2,5
E	6.40 BSC			
E1	4.30	4.40	4.50	3,5
A	-	-	1.20	
A2	0.80	1.00	1.05	
b	0.19	-	0.30	4
e	0.65 BSC			
L	0.45	0.60	0.75	
L1	1.00 REF			

Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-153, Variation AA, for proper dimensions, tolerances, datums, etc.
2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusions and gate burrs shall not exceed 0.15 mm (0.006 in) per side.
3. Dimension E1 does not include inter-lead Flash or protrusions. Inter-lead Flash and protrusions shall not exceed 0.25 mm (0.010 in) per side.
4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the b dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. Minimum space between protrusion and adjacent lead is 0.07 mm .
5. Dimension D and E1 to be determined at Datum Plane H.

2325 Orchard Parkway San Jose, CA 95131	TITLE 8A2, 8-lead, 4.4 mm Body, Plastic Thin Shrink Small Outline Package (TSSOP)	DRAWING NO. 8 A 2	$\begin{array}{\|c} \hline \text { REV. } \\ B \end{array}$

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa BIdg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
 www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.
© Atmel Corporation 2004. All rights reserved. Atmel ${ }^{\circledR}$ and combinations thereof, are the registered trademarks, and $d B G A 2^{T M}$ is the trademark of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.

