# Current-Limited Switch for Single USB Port 


#### Abstract

General Description The MAX1931 is a current-limited, $60 \mathrm{~m} \Omega$ switch with built-in fault blanking. Its accurate preset current limit of 0.64A to 1.06A makes it ideally suited for USB applications. The device's low quiescent supply current ( $14 \mu \mathrm{~A}$ ) and shutdown current $(1 \mu \mathrm{~A})$ conserve battery power in portable applications. The MAX1931 operates with inputs from 2.7 V to 5.5 V , making it ideal for both 3 V and 5 V systems. A fault signal notifies the microprocessor that the internal current limit has been reached. A 10 ms fault-blanking feature allows momentary faults (such as those caused when hot-swapping into a capacitive load) to be ignored, thus preventing false alarms to the host system. This fault blanking also prevents a fault signal from being issued when the device is powering up. In the MAX1931, an output overcurrent condition causes the switch to current limit at 0.64 A to 1.06 A and $\overline{\mathrm{FAULT}}$ to go low after the 10 ms blanking period. When the overcurrent condition is removed, FAULT returns to its high-impedance state. The MAX1931 has several safety features to ensure that the USB port is protected. Built-in thermal overload protection limits power dissipation and junction temperatures. The device has an accurate internal current-limiting circuitry to protect the input supply against overload. The MAX1931 is available in a space-saving 10-pin $\mu \mathrm{MAX}$ package.

Applications USB Ports and Hubs Notebook Computers Portable Equipment Docking Stations Hot Plug-In Power Supplies Battery-Charger Circuits


- 0.5A Guaranteed Output Current
- Guaranteed 0.75A Short-Circuit Protection
- 10ms Internal Fault-Blanking Timeout
- No Fault Signal During Power-Up
- Thermal Shutdown Protection
- 2.7V to 5.5V Supply Range
- $14 \mu \mathrm{~A}$ Supply Current
- Small 10-Pin $\mu$ MAX Package

Ordering Information

| PART | TEMP RANGE | PIN-PACKAGE |
| :---: | :--- | :--- |
| MAX1931EUB | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $10 \mu \mathrm{MAX}$ |

Pin Configuration


Typical Operating Circuit


## Current-Limited Switch for Single USB Port

## ABSOLUTE MAXIMUM RATINGS

IN, $\overline{O N}$ (ON), $\overline{F A U L T}$ to GND $\qquad$ ..............-0.3V to +6 V OUT to GND $\qquad$ -0.3 V to $\left(\mathrm{V}_{\mathrm{IN}}+0.3 \mathrm{~V}\right)$
Maximum Continuous Switch Current .. ..1.2A (internally limited) OUT Short Circuit to GND $\qquad$ .Continuous Continuous Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ )

$$
\text { 10-Pin } \mu \mathrm{MAX} \text { (derate } 5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \text { above }+70^{\circ} \mathrm{C} \text { ) ............ } 444 \mathrm{~mW}
$$

Operating Temperature Range
$-5^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$
$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V} / \mathrm{N}=5 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\right.$ to $\mathbf{+ 8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operating Voltage | VIN |  |  | 2.7 |  | 5.5 | V |
| Quiescent Current | IQ | $V \overline{O N}=$ GND, IOUT $=0$ | Timer not running | 1435 |  |  | $\mu \mathrm{A}$ |
|  |  |  | Timer running |  |  |  |  |
| Off Supply Current |  | $\mathrm{V} \overline{\mathrm{ON}}=\mathrm{V}$ IN $=$ V $\mathrm{OUT}=5.5 \mathrm{~V}$ |  |  | 0.001 | 1 | $\mu \mathrm{A}$ |
| Undervoltage Lockout | UVLO | Rising edge, 100 mV hysteresis |  | 2.0 |  | 2.6 | V |
| Off Switch Leakage |  | $\begin{aligned} & V_{\overline{O N}}=V_{I N} \\ & V_{I N}=5.5 \mathrm{~V}, \\ & V_{O U T}=G N D \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 0.01 | 4 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  | 20 |  |
| On-Resistance | Ron | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | $\mathrm{V} \mathrm{IN}=4.4 \mathrm{~V}$ to 5.5 V |  | 60 | 110 | $\mathrm{m} \Omega$ |
|  |  | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $\mathrm{V} \mathrm{IN}=4.4 \mathrm{~V}$ to 5.5 V |  |  | 150 |  |
|  |  |  | V IN $=3 \mathrm{~V}$ |  | 72 | 180 |  |
| Current Limit | ILIMIT | VOUT $=4.5 \mathrm{~V}$ |  | 640 | 850 | 1060 | mA |
| Continuous Short-Circuit Current Limit | ISC | OUT shorted to GND |  |  | 500 | 700 | mA |
| $\overline{\text { ON }}$ Input Logic Low Voltage | VIL | $\mathrm{V} \mathrm{IN}=2.7 \mathrm{~V}$ to 5.5 V |  |  |  | 0.8 | V |
| $\overline{\mathrm{ON}}$ Input Logic High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{V} \mathrm{IN}=2.7 \mathrm{~V}$ to 3.6 V |  | 2 |  |  | V |
|  |  | $\mathrm{V} \mathrm{IN}=3.7 \mathrm{~V}$ to 5.5 V |  | 2.4 |  |  |  |
| $\overline{\text { ON Input Leakage }}$ |  | $\mathrm{V} \overline{\mathrm{ON}}=\mathrm{VIN}$ or GND |  |  |  | $\pm 1$ | $\mu \mathrm{A}$ |
| FAULT Output Logic Low Voltage | VoL | IS INK $=1 \mathrm{~mA}, \mathrm{~V} / \mathrm{N}=3 \mathrm{~V}$ |  |  |  | 0.4 | V |
| $\overline{\text { FAULT Output High }}$ Leakage Current |  | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\overline{\text { FAULT }}}=5.5 \mathrm{~V}$ |  |  |  | 1 | $\mu \mathrm{A}$ |
| Fault-Blanking Timeout Period | tFB | From overcurrent condition to $\overline{\text { FAULT assertion }}$ |  | 6 | 10 | 13 | ms |
| Startup Time |  | $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \text { COUT }=150 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=15 \Omega \text {, }$ from $\overline{\text { ON }}$ driven low to $50 \%$ full Vout |  |  | 1 |  | ms |
| Switch Turn-On Time | ton | ILOAD $=400 \mathrm{~mA}$ |  |  | 80 | 200 | $\mu \mathrm{s}$ |
| Switch Turn-Off Time | toff | ILOAD $=400 \mathrm{~mA}$ |  | 3 | 6 | 20 | $\mu \mathrm{s}$ |
| Thermal Shutdown Threshold |  |  |  |  | 165 |  | ${ }^{\circ} \mathrm{C}$ |

## Current-Limited Switch for Single USB Port

## ELECTRICAL CHARACTERISTICS

(VIN $=5 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Operating Voltage | VIN |  | 3 | 5.5 | V |
| Quiescent Current | IQ | $V \overline{O N}=\mathrm{GND}, \mathrm{l}$ OUT $=0$, timer not running |  | 35 | $\mu \mathrm{A}$ |
| Off Supply Current |  | $\mathrm{V} \overline{\mathrm{ON}}=\mathrm{VIN}=$ VOUT $=5.5 \mathrm{~V}$ |  | 2 | $\mu \mathrm{A}$ |
| Undervoltage Lockout | UVLO | Rising edge, 100mV hysteresis | 2.0 | 2.9 | V |
| Off Switch Leakage |  | $V_{\overline{O N}}=\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{GND}$ |  | 20 | $\mu \mathrm{A}$ |
| On-Resistance | Ron | $\mathrm{V}_{\mathrm{IN}}=4.4 \mathrm{~V}$ to 5.5 V |  | 150 | $\mathrm{m} \Omega$ |
|  |  | $\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ |  | 180 |  |
| Current Limit | ILIMIT | $\mathrm{V}_{\text {OUT }}=4.5 \mathrm{~V}$ | 600 | 1100 | mA |
| Continuous Short-Circuit Current Limit |  | OUT shorted to GND |  | 750 | mA |
| $\overline{\mathrm{ON}}$ Input Logic Low Voltage | VIL | V IN $=3 \mathrm{~V}$ to 5.5 V |  | 0.8 | V |
| $\overline{\text { ON }}$ Input Logic High Voltage | $\mathrm{V}_{\mathrm{IH}}$ | VIN $=3 \mathrm{~V}$ to 3.6 V | 2 |  | V |
|  |  | $\mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}$ to 5.5 V | 2.4 |  |  |
| $\overline{\text { ON Input Leakage }}$ |  | $V_{\overline{O N}}=\mathrm{V}_{\text {IN }}$ or GND |  | $\pm 1$ | $\mu \mathrm{A}$ |
| FAULT Output Logic Low Voltage | VoL | $\mathrm{ISINK}=1 \mathrm{~mA}, \mathrm{~V}$ IN $=3 \mathrm{~V}$ |  | 0.4 | V |
| FAULT Output High Leakage Current |  | $\mathrm{VIN}=\mathrm{V} \overline{\mathrm{FAULT}}=5.5 \mathrm{~V}$ |  | 1 | $\mu \mathrm{A}$ |
| Fault-Blanking Timeout Period | tFB | From overcurrent condition to $\overline{\text { FAULT assertion }}$ | 6 | 14 | ms |
| Switch Turn-On Time | ton | ILOAD $=400 \mathrm{~mA}$ |  | 200 | $\mu \mathrm{s}$ |
| Switch Turn-Off Time | toff | ILOAD $=400 \mathrm{~mA}$ | 1 | 20 | $\mu \mathrm{s}$ |

Note 1: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

## Current-Limited Switch for Single USB Port





## Current-Limited Switch for Single USB Port

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{I}} \mathrm{N}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)


$\mathrm{CH} 1=\mathrm{V}_{\text {OUT }}, 5 \mathrm{~V} / \mathrm{div} ; \mathrm{CH} 2=\mathrm{V}_{\overline{\mathrm{ON}}}, 5 \mathrm{~V} / \mathrm{div}$;
CH3 $=\mathrm{V}_{\text {FAULT }}, 5 \mathrm{~V} / \mathrm{div} ; \mathrm{CH} 4=\mathrm{l}_{\text {OUt }}, 200 \mathrm{~mA} / \mathrm{div}$
$\mathrm{CH} 1=\mathrm{V}_{\mathrm{IN}}, 200 \mathrm{mV} / \mathrm{div}$, AC-COUPLED; CH2 $=\mathrm{V}_{\text {OUT }}$, $5 \mathrm{~V} / \mathrm{div}$; CH3 $=\mathrm{V}$ FAULT, $5 \mathrm{~V} / \mathrm{div} ; \mathrm{CH} 4=\mathrm{I}_{\text {OUt }}, 500 \mathrm{~mA} /$ div

$\mathrm{CH} 1=\mathrm{V}_{\text {Out }}, 5 \mathrm{~V} / \mathrm{div} ; \mathrm{CH} 2=\mathrm{V}_{\overline{\text { ON }}}, 5 \mathrm{~V} /$ div; $\mathrm{CH} 3=V_{\text {FAULT }}, 5 \mathrm{~V} / \mathrm{div} ; \mathrm{CH} 4=10 \mathrm{l}$ OUt, $200 \mathrm{~mA} /$ div


CH1 $=\mathrm{V}_{\mathrm{IN}}, 200 \mathrm{mV} / \mathrm{div}$, AC-COUPLED; CH2 $=\mathrm{V}_{\text {OUT }}$, $5 \mathrm{~V} / \mathrm{div}$; CH3 $=\mathrm{V}_{\text {FAULT }}, 5 \mathrm{~V} / \mathrm{div}$; CH4 $=$ Iout, $1 \mathrm{~A} /$ div

STARTUP TIME (TYPICAL USB APPLICATION)

$\mathrm{CH} 1=\mathrm{V}_{\text {OUT }}, 5 \mathrm{~V} / \mathrm{div} ; \mathrm{CH} 2=\mathrm{V}_{\overline{\text { ON, }}}, 5 \mathrm{~V} / \mathrm{div}$; CH3 $=$ Iout, $500 \mathrm{~mA} / \mathrm{div} ; \mathrm{CH} 4=\mathrm{V}_{\text {FAULT }} 5 \mathrm{~V} / \mathrm{div}$

## Current-Limited Switch for Single USB Port

| PIN | NAME | FUNCTION |
| :---: | :---: | :--- |
| $1,3,9$ | IN | Input. P-channel MOSFET source. Connect all IN pins together and bypass with a 1 $\mu \mathrm{F}$ <br> ceramic capacitor to ground. |
| $2,4,8,10$ | OUT | Switch Output. P-channel MOSFET drain. Connect all OUT pins together and bypass with a <br> $0.1 \mu$ F capacitor to ground. |
| 5 | $\overline{\text { ON }}$ | Active-Low Switch On Input. A logic low turns the switch on. |
| 6 | GND | Ground |
| 7 | $\overline{\text { FAULT }}$ | Fault-Indicator Output. This open-drain output goes low when the device is in thermal shut- <br> down, undervoltage lockout, or on a sustained ( $>10 \mathrm{~ms}$ ) current-limit condition. |



Figure 1. Functional Diagram

## Detailed Description

The MAX1931 P-channel MOSFET power switch limits output current to $0.64 \mathrm{~A}(\mathrm{~min})$ to 1.06 A (max). When the output current is increased beyond the current limit (ILIMIT), the current also increases through the replica switch (IOUT / 6500). The current-limit error amplifier compares the voltage to the internal 1.24 V reference and regulates the current back to the ILIMIT.
This switch is not bidirectional; therefore, the input voltage must be higher than the output voltage.

Continuous Short-Circuit Protection
The MAX1931 is a foldback short-circuit-protected switch. In the event of an output short-circuit or currentoverload condition, the current through the switch is foldback-current-limited to 500 mA continuous.

Thermal Shutdown The MAX1931 features thermal shutdown. The switch turns off and the FAULT output goes low immediately (no fault blanking) when the junction temperature exceeds $+165^{\circ} \mathrm{C}$. When the MAX1931 cools $20^{\circ} \mathrm{C}$, the switch turns back on. If the fault short-circuit condition is not removed, the switch cycles on and off, resulting in a pulsed output.

FAULT Indicator The MAX1931 provides a fault output ( $\overline{\mathrm{FAULT}}$ ). A $100 \mathrm{k} \Omega$ pullup resistor from $\overline{\mathrm{FAULT}}$ to IN provides a logic control signal. This open-drain output goes low when any of the following conditions occur:

- The input voltage is below the undervoltage lockout (UVLO) threshold.
- The die temperature exceeds the thermal shutdown temperature limit of $+165^{\circ} \mathrm{C}$.
- The device is in current limit and the 10 ms faultblanking period is exceeded.

Fault Blanking
The MAX1931 features 10ms fault blanking. Fault blanking allows current-limit faults, including momentary short-circuit faults that occur when hot-swapping a capacitive load, and also ensures that no fault is issued during power-up. When a load transient causes the device to enter current limit, an internal counter starts. If the load fault persists beyond the 10 ms fault-blanking timeout, the FAULT output asserts low. Ensure that the MAX1931's input is adequately bypassed to prevent input glitches from triggering spurious $\overline{F A U L T}$ outputs. Input voltage glitches less than 150 mV do not cause a

# Current-Limited Switch for Single USB Port 

spurious $\overline{\text { FAULT }}$ output. Load-transient faults less than 10 ms (typ) do not cause a FAULT output assertion.
Only current-limit faults are blanked. Die overtemperature faults and input voltage droops below the UVLO threshold cause an immediate fault output.

## Applications Information

## Input Capacitor

To limit the input voltage drop during momentary output short-circuit conditions, connect a capacitor from IN to GND. A $1 \mu \mathrm{~F}$ ceramic capacitor is adequate for most applications; however, higher capacitor values further reduce the voltage drop at the input (see Figure 2).

## Output Capacitor

Connect a $0.1 \mu \mathrm{~F}$ capacitor from OUT to GND. This capacitor helps prevent inductive parasitics from pulling OUT negative during turn-off.

## Layout and Thermal Dissipation

To optimize the switch-response time to output shortcircuit conditions, it is very important to keep all traces as short as possible to reduce the effect of undesirable parasitic inductance. Place input and output capacitors as close to the device as possible (no more than 5 mm ).


Figure 2. Typical Application Circuit

All IN and all OUT pins must be connected with short traces to the power bus. Wide power bus planes provide superior heat dissipation through the switch IN and OUT pins. Figure 3 shows suggested pin connections for a single-layer board.
Under normal operating conditions, the package can dissipate and channel heat away. Calculate the maximum power dissipation as follows:

$$
P=(I L I M I T)^{2} \times R O N
$$

where lLIMIT is the preset current limit (1.1A max) and RON is the on-resistance of the switch ( $150 \mathrm{~m} \Omega$ max).
When the output is short-circuited, foldback-current-limiting activates and the voltage drop across the switch equals the input supply. The power dissipated across the switch increases, as does the die temperature. If the fault condition is not removed, the thermal-overload protection circuitry activates (see the Thermal Shutdown section). Wide power-bus planes connected to IN and OUT and a ground plane in contact with the device help dissipate additional heat.

## Chip Information

TRANSISTOR COUNT: 715


Figure 3. IN and OUT Cross Connections for a Single-Layer Board

## Current-Limited Switch for Single USB Port

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)


Note: MAX1931 does not have an exposed pad.

