

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage

| Operational Voltage | $26 \mathrm{~V}_{\mathrm{DC}}$ |
| :--- | ---: | ---: |
| Sustained Voltage | $-40 \mathrm{~V}_{\mathrm{DC}} \geq \mathrm{V}_{\mathrm{CC}} \leq 85 \mathrm{~V} C$ |
| Transient Voltage Protection | $\pm 85 \mathrm{~V}$ |
| $\left(\tau=100 \mathrm{~ms}, 1 \%\right.$ Duty Cycle, $\left.\mathrm{R}_{\mathrm{S}} \geq 10 \Omega\right)$ | |
| Pins 4,5 | $26 \mathrm{~V}_{\mathrm{DC}}$ |

Power Dissipation (Note 1)
Load Inductance
Operating Temperature Range (T_{A})
Maximum Junction Temperature
Storage Temperature Range Lead Temperature (Soldering 10 sec.)
ESD Tolerance (Note 4): 2000V

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{l}_{\text {out }}=500 \mathrm{~mA}, \mathrm{C}_{\text {out }}=0.001 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Conditions	Typical		Design Limit (Note 3)	Units
Supply Voltage, V_{CC} Operational Transient			4.5		$\mathrm{V}_{\text {min }}$
			26		$\mathrm{V}_{\text {max }}$
	$\tau=100 \mathrm{~ms}, 1 \%$ Duty Cycle, $\mathrm{R}_{\mathrm{CC}} \geq 10 \Omega$		-85		V
			85		V
Supply Current	$\mathrm{I}_{\text {out }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {ON } / \overline{\text { OFF }}}=0.8 \mathrm{~V}$	0.1	10	100	$\mu A_{\text {max }}$
	$\mathrm{I}_{\text {out }}=250 \mathrm{~mA}, \mathrm{~V}_{\text {ON } / \overline{\text { OFF }}}=2.0 \mathrm{~V}$	260	270		$m A_{\text {max }}$
	$\mathrm{I}_{\text {out }}=600 \mathrm{~mA}, \mathrm{~V}_{\text {ON } / \overline{\text { OFF }}}=2.0 \mathrm{~V}$	630	650		$\mathrm{mA}_{\text {max }}$
	$\mathrm{l}_{\text {out }}=1 \mathrm{~A}, \mathrm{~V}_{\text {ON }} / \overline{\text { OFF }}=2.0 \mathrm{~V}$	1.06	1.2		$\mathrm{A}_{\text {max }}$
Voltage Drop (V_{CC} - $\left.\mathrm{V}_{\mathrm{OUT}}\right)$	$\mathrm{I}_{\text {out }}=600 \mathrm{~mA}, \mathrm{~V}_{\text {ON/ } / \overline{\text { FFF }}}=2.0 \mathrm{~V}$	400	600		mV max
	$\mathrm{I}_{\text {out }}=1 \mathrm{~A}, \mathrm{~V}_{\text {ON/ }} \overline{\text { OFF }}=2.0 \mathrm{~V}$	0.7	1.0		$\mathrm{V}_{\text {max }}$
Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {ON/ }} \overline{\mathrm{OFF}}=2 \mathrm{~V}$	1.3	1.0		$A_{\text {min }}$
			2.5		$\mathrm{A}_{\text {max }}$
Input Threshold, Pin 5	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 26 \mathrm{~V}$	1.4	2.0	2.0	$\mathrm{V}_{\text {max }}$
		1.2	0.8	0.8	$\mathrm{V}_{\text {min }}$
Input Current, Pin 5	$0.8 \mathrm{~V} \leq \mathrm{V}_{\text {ON/OFF }} \leq 5.5 \mathrm{~V}$	25	50		$\mu \mathrm{A}_{\max }$
			10		$\mu A_{\text {min }}$
Output Clamp	$\mathrm{l}_{\text {out }} \leq 600 \mathrm{~mA}$	-30	-40		$\mathrm{V}_{\text {min }}$
			-24		$\mathrm{V}_{\text {max }}$
$\begin{array}{ll} \text { Delay } & t_{d}, \text { ON } \\ \text { Time } & t_{d} \text {, OFF } \end{array}$	$\mathrm{R}_{\text {load }}=20 \Omega, \mathrm{C}_{\text {load }}=0.001 \mu \mathrm{~F}$	1	3		$\mu \mathrm{S}_{\text {max }}$
		1	3		$\mu \mathrm{S}_{\text {max }}$
Rise Time		1	3		$\mu \mathrm{S}_{\text {max }}$
Fall Time		1	3		$\mu \mathrm{S}_{\text {max }}$
Error Flag Characteristics: Output Voltage	Error Condition, Pin 4 Low, Sinking 10 mA	0.3	0.8		$\mathrm{V}_{\text {max }}$
Sink Current	Error Condition, Pin $4=0.3 \mathrm{~V}$	10	3		$\mathrm{mA}_{\text {min }}$
Output Leakage Current	No Error, Pin $4=26 \mathrm{~V}$	0.01	1		$\mu \mathrm{A}_{\max }$
Response Time	$\mathrm{V}_{\text {LOGIC }}=5 \mathrm{~V}, \mathrm{R}_{\text {LOGIC }}=2 \mathrm{k} \Omega, \mathrm{C}_{\text {LOGIC }}=0 \mu \mathrm{~F}$	1			$\mu \mathrm{S}$

Note 1: Thermal resistance junction-to-case is $3^{\circ} \mathrm{C} / \mathrm{W}$. Thermal resistance case-to-ambient is $50^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Tested Limits are guaranteed and 100\% production tested.
Note 3: Design Limits are guaranteed (but not 100% production tested) over the operating temperature and supply voltage range. These limits are not used to calculate outgoing quality levels.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Error Flag Output Characteristics

Open Load Threshold

Over Voltage Threshold

Truth Table

Fault Condition	$\mathrm{V}_{\text {ON/ }}$ OFF *	$\mathrm{V}_{\text {out }}$	Error Flag
Normal	L	L	H
	H	H	H
Overvoltage	L	L	L
	H	L	L
Thermal Shutdown	L	L	L
	H	L	L
$V_{\text {OUT }}$ Short to GND	L	L	H
	H	L	L
$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}_{\text {supply }}$	L	H	L
	H	H	L
Open Load	L	L	H
	H	H	L
Current Limit	L	L	H
	H	H	L

Typical Applications (Continued)

TL/H/9133-11

Operation	Switch Type
Empty	Normally Open
Fill	Normally Closed

FIGURE 8. Fluid Level Controller

FIGURE 9. Indicator Lamp Driver

Application Hints

When inductive loads are turned OFF, they produce a negative voltage spike. The LM1951 contains a voltage clamp that limits these spikes to approximately -30 V , thus an external clamp is not necessary in most applications.
Loads with an inductance of greater than 1 H , driven to full output current, may damage the clamp simply by exceeding the power capabilities of the LM1951. An LM1951 can dissipate 25 W continuous at $25^{\circ} \mathrm{C}$ ambient when mounted on a large heatsink. If the load current is limited to 800 mA , the sustained spike from an infinitely large inductance can be handled. Sustained spikes produced by higher currents and high inductances will exceed the 25W limit.
For inductances above 1 H , care should be taken to see that the output current does not exceed a value that could damage the clamp. While 800 mA is acceptable for the device running at $25^{\circ} \mathrm{C}$ ambient on a heatsink, derate this current for smaller heatsinks or higher ambient temperatures to limit the junction temperature to $150^{\circ} \mathrm{C}$. Alternatively, an external clamp or resonating capacitor can be added to handle any combination of load inductance, load current, and device temperature. This is especially important if the output current is boosted, such as the application shown in Figure 3. A peak power of 750 W could be developed in the internal clamp if an inductive load is switched without external clamping.
Another case where the clamp's power capability may be exceeded is when driving a solenoid. The inductance of a solenoid is greatest when energized, with the plunger pulled in. As the plunger is pulled out of the solenoid, the inductance goes down. Under certain conditions of high solenoid inductance and fast mechanical time constants, the current may actually increase when the solenoid is turned OFF. Since the energy stored in an inductor cannot change instantaneously, the current must increase to conserve energy when the inductance decreases. This condition is traced by observing the load current with a current probe and storage oscilloscope.
Load capacitances larger than 1 nF will slow rise and fall times. Inductive loads having a capacitive component larger than 1 nF will also exhibit overshoot. Furthermore, ringing
may be evident in a combination inductive/capacitive load, or in an inductive load with supply decoupling capacitors in the range of 100 nF to $1 \mu \mathrm{~F}$. For fast rise and fall times and minimum ringing with inductive loads, a supply decoupling capacitor of 10 nF and an output capacitor of 1 nF is recommended. These should be located as close to the IC pins as possible.

The error flag is an open collector output that pulls low under certain fault conditions. These errors include overvoltage ($\mathrm{V}_{\mathrm{CC}}>26 \mathrm{~V}$), overcurrent (lout $>1.3 \mathrm{~A}$), undercurrent (lout $<2 \mathrm{~mA}$), output short circuit to ground, output short circuit to supply, and junction temperature greater than $150^{\circ} \mathrm{C}$. By connecting a $2 \mathrm{k} \Omega$ resistor from the error flag output to a 5 V supply a logic output to a microprocessor is provided.
The error flag can give seemingly false indications in a number of situations. Slewing large capacitive loads (>100 nF) can drive the LM1951 into temporary current limit, producing a momentary error indication. Incandescent lamps and DC motors require an inrush current that will also cause a temporary current limit and error indication. Large inductive loads ($>50 \mathrm{mH}$) initially appear as open circuits, falsing the error flag. The error flag pulses for about $1 \mu s$ when any load is turned ON since the output is initially at ground. In microprocessor systems these false indications are easily ignored in software. In discrete logic circuits utilizing a latch at the error flag output, some filtering may be required.
An internal current sink ($10 \mu \mathrm{~A}$ minimum) is connected to the input, pin 5 . If this pin is left open it is guaranteed to pull low, switching the LM1951 OFF. This characteristic is important under certain fault conditions such as when the control line fails open cirucit

Although the input threshold has hysteresis, the switch points are derived from a very stable band-gap reference. In many applications, such as Figures 5 and 7, the LM1951 input can replace an extenal reference and comparator.
The input (pin 5) is clamped at -0.7 V and includes a series resistance of approximately $30 \mathrm{k} \Omega$. This pin tolerates negative inputs of up to 1 mA without affecting the performance of the chip

Physical Dimensions inches (millimeters)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

