

General Description

The MAX890L smart, low-voltage, P-channel, MOSFET power switch is intended for high-side load-switching applications. This switch operates with inputs from +2.7V to +5.5V, making it ideal for both +3V and +5V systems. Internal current-limiting circuitry protects the input supply against overload. Thermal-overload protection limits power dissipation and junction temperatures.

The MAX890L's maximum current limit is 1.2A. The current limit through the switch is programmed with a resistor from SET to ground. The quiescent supply current is a low 10µA. When the switch is off, the supply current decreases to 0.1µA.

The MAX890L is available in an 8-pin SO package.

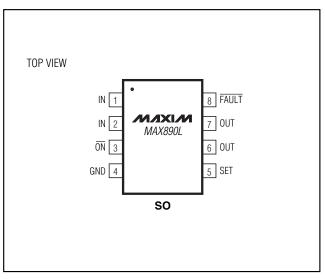
Applications

PCMCIA Slots Access Bus Slots Portable Equipment

Features

- ♦ +2.7V to +5.5V Input Range
- ♦ Programmable Current Limit
- ♦ Low Quiescent Current $10\mu A \text{ (typ) at V}_{IN} = +3.3V$ 0.1µA (typ) with Switch Off
- ♦ Thermal Shutdown
- **♦ FAULT Indicator Output**
- ♦ 0.09Ω (typ) On-Resistance

Ordering Information


PART*	TEMP. RANGE	PIN- PACKAGE	CURRENT LIMIT
MAX890LC/D	0°C to +70°C	Dice**	1.2A
MAX890LESA	-40°C to +85°C	8 SO	1.2A

^{*} To order this unit in tape and reel, add (-T) to the end of the part

Typical Operating Circuit

0U1 OUTPUT INPUT /VI/IXI/VI 0.1µF IN MAX890L OUT 100kΩ FAULT ŌN ■ ON/OFF GND SE1

Pin Configuration

MIXIM

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

^{**} Dice are tested at T_A = +25°C.

ABSOLUTE MAXIMUM RATINGS

IN to GND0.3	V to +6V	Operating Temperature Range	
ON, FAULT to GND0.3	V to +6V	MAX890LESA	40°C to +85°C
SET, OUT to GND0.3V to (VIN	ı + 0.3V)	Storage Temperature Range	65°C to +150°C
Maximum Continuous Switch Current	1.5Á	Lead Temperature (soldering, 10s)	+300°C
Continuous Power Dissipation ($T_A = +70^{\circ}C$)			
SO (derate 5.88m\W/°C above ±70°C)	471m\W		

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

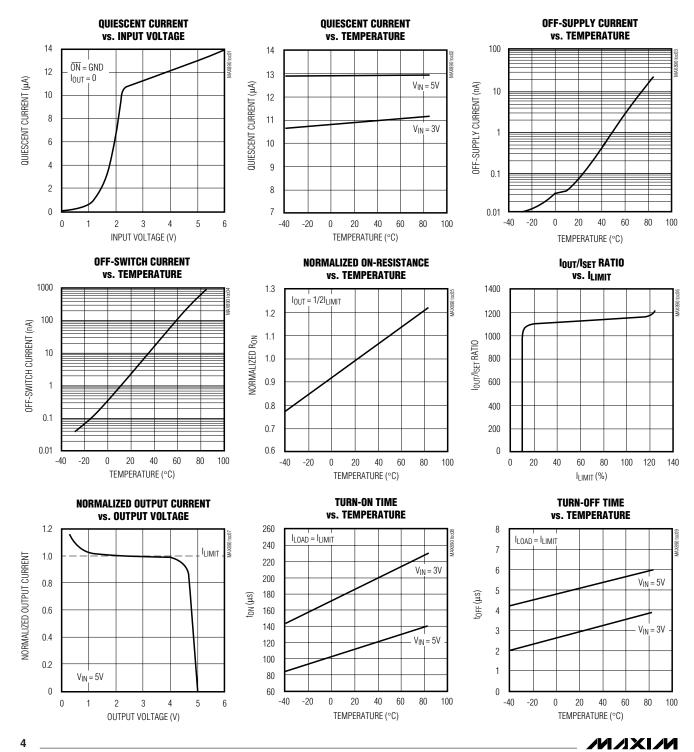
 $(V_{IN} = +3V, T_A = 0^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C.)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Operating Voltage		2.7		5.5	V	
Quiescent Current	$V_{IN} = 5V$, $\overline{ON} = GND$, $I_{OUT} = 0$		13	20	μΑ	
Off-Supply Current	$\overline{ON} = IN, V_{IN} = V_{OUT} = 5.5V$		0.03	1	μΑ	
Off-Switch Current	$\overline{ON} = IN, V_{IN} = 5.5V, V_{OUT} = 0$		0.04	15	μΑ	
Undervoltage Lockout	Rising edge, 1% hysteresis	2.0	2.4	2.6	V	
On-Resistance	$V_{IN} = 4.5V$		75	130	mΩ	
	V _{IN} = 3.0V		90	150		
Current-Limit-Amplifier Threshold	V _{SET} required to turn the switch off (Note 1)	1.178	1.240	1.302	V	
Maximum Output Current Limit			1.2		Α	
IOUT to ISET Current Ratio	I _{OUT} = 500mA, V _{OUT} > 1.6V	970	1110	1300	A/A	
ON Input Low Voltage	V _{IN} = 2.7V to 5.5V			0.8	V	
	V _{IN} = 2.7V to 3.6V	2.0			V	
ON Input High Voltage	V _{IN} = 4.5V to 5.5V	2.4				
ON Input Leakage Current	V _{ON} = 5.5V		0.01	1	μΑ	
I _{SET} Bias Current	V _{SET} = 1.24V, I _{OUT} = 0; V _{IN} = V _{OUT}		0.5	3	μΑ	
FAULT Logic Output Low Voltage	I _{SINK} = 1mA, V _{SET} = 1.4V			0.4	V	
FAULT Logic Output High Leakage Current	VFAULT = 5.5V, VSET = 1V		0.05	1	μΑ	
Slow-Current-Loop Response Time	20% current overdrive, V _{CC} = 5V		5		μs	
Fast-Current-Loop Response Time			2		μs	
T. O. T.	V _{IN} = 5V, I _{OUT} = 500mA		120	200	μs	
Turn-On Time	V _{IN} = 3V, I _{OUT} = 500mA		185			
Turn-Off Time	V _{IN} = 5V	2	5		μs	

ELECTRICAL CHARACTERISTICS

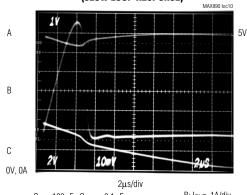
 $(V_{IN} = +3V, T_A = -40$ °C to +85°C, unless otherwise noted.) (Note 2)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Voltage		3.0		5.5	V
Quiescent Current	$V_{IN} = 5V, \overline{ON} = GND, I_{OUT} = 0$			50	μΑ
Off-Supply Current	$\overline{ON} = IN, V_{IN} = V_{OUT} = 5.5V$			2.2	μΑ
Off-Switch Current	\overline{ON} = IN, V_{IN} = 5.5V, V_{OUT} = 0			15	μΑ
Undervoltage Lockout	Rising edge, 1% hysteresis	2.0		2.9	V
On-Resistance	V _{IN} = 4.5V			130 mΩ	
	$V_{IN} = 3.0V$			150	11152
Current-Limit-Amplifier Threshold	V _{SET} required to turn the switch off (Note 1)	1.14		1.34	V
IOUT to ISET Current Ratio	I _{OUT} = 500mA, V _{OUT} > 1.6V	925		1390	A/A
FAULT Logic Output Low Voltage	ISINK = 1mA, VSET = 1.4V			0.4	V
Turn-On Time	V _{IN} = 5V			200	μs
Turn-Off Time	$V_{IN} = 5V$	1		20	μs


Note 1: Tested with I_{OUT} = 100mA and V_{SET} raised until V_{IN} - V_{OUT} \geq 0.8V.

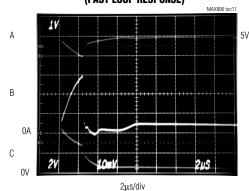
Note 2: Specifications to -40°C are guaranteed by design, not production tested.

Typical Operating Characteristics

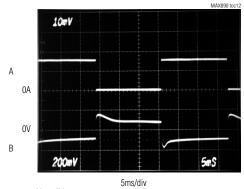

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Typical Operating Characteristics (continued)

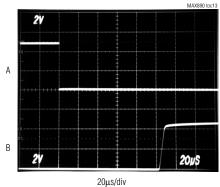
 $(T_A = +25$ °C, unless otherwise noted.)



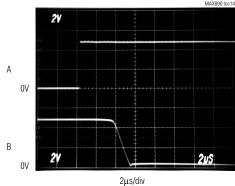
$$\begin{split} C_{IN} &= 100 \mu F, \ C_{OUT} = 0.1 \mu F \\ A: V_{IN}, \ 1V/div, \ AC-COUPLED \end{split}$$


B: I_{OUT}, 1A/div C: V_{OUT}, 2V/div

OUTPUT SHORT-CIRCUIT (FAST LOOP RESPONSE)


 $C_{IN} = 100\mu F$, $C_{OUT} = 0.1\mu F$ A: V_{IN} , 1V/div, AC-COUPLED B: I_{OUT}, 5A/div C: V_{OUT}, 2V/div

LOAD-TRANSIENT RESPONSE


A: I_{OUT} = 0mA TO 750mA, 0.5A/div B: V_{OUT} RIPPLE, 200mV/div, AC COUPLED

SWITCH TURN-ON TIME

 $V_{IN} = 5V$, $I_{OUT} = I_{LIMIT}$ A: V_{ON} , 2V/divB: V_{OUT} , 2V/div

SWITCH TURN-OFF TIME

$$\begin{split} V_{IN} &= 5V, \ I_{OUT} = I_{LIMIT} \\ A: \ V_{\overline{ON}}, \ 2V/div \\ B: \ V_{OUT}, \ 2V/div \end{split}$$

Pin Description

PIN	NAME	FUNCTION
1, 2	IN	Input. P-channel MOSFET source. Bypass IN with a 1μF capacitor to ground.
3	ŌN	Active-Low Switch On Input. A logic low turns the switch on.
4	GND	Ground
5	SET Set Current-Limit Input. A resistor from SET to ground sets the current limit for the switch. $R_{SET} = 1.38 \times 10^3 / I_{LIMIT}$, where I_{LIMIT} is the desired current limit in amperes.	
6, 7	OUT Switch Output. P-channel MOSFET drain. Bypass OUT with a 0.1µF capacitor to ground.	
8	FAULT	Fault-Indicator Output. This open-drain output goes low when in current limit or when the die temperature exceeds +135°C.

Detailed Description

The MAX890L P-channel MOSFET power switch limits output current to a programmed level. When the output current is increased beyond the programmed current limit, or 1.2A (I_{MAX}), the current also increases through the replica switch (I_{OUT}/1110) and through R_{SET} (Figure 1). The current-limit error amplifier compares the voltage across R_{SET} to the internal +1.24V reference, and regulates the current back to the lesser of the programmed limit (I_{LIMIT}) or 1.2A.

This switch is not bidirectional; therefore, the input voltage must be higher than the output voltage.

Setting the Current Limit

The MAX890L features internal current-limiting circuitry with a maximum programmable value (I_{MAX}) of 1.2A. For best performance, set the current limit (I_{LIMIT}) between 0.2 I_{MAX} \leq I_{LIMIT} \leq I_{MAX}. This current limit remains in effect throughout the input supply-voltage range.

Program the current limit with a resistor (RSET) from SET to ground (Figure 2) as follows:

ISET = ILIMIT / 1110

 $RSET = 1.24V / I_8 = 1.38 \times 10^3 / ILIMIT$

where ILIMIT is the desired current limit.

Short-Circuit Protection

The MAX890L is a short-circuit-protected switch. In the event of an output short circuit or current-overload condition, the current through the switch is limited by the internal current-limiting error amplifier to 1.5 x I_{LIMIT} . When the fault condition is removed, the replica error amplifier will set the current limit back to I_{LIMIT} .

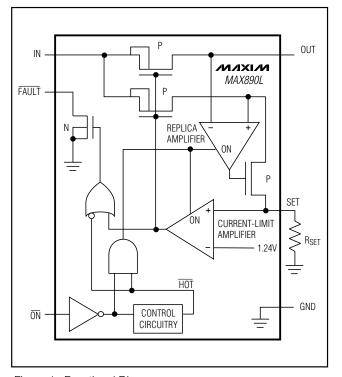


Figure 1. Functional Diagram

For a high dV_{DS}/dt during an output short-circuit condition, the switch turns off and disconnects the input supply from the output. The current-limiting amplifier then slowly turns the switch on with the output current limited to 1.5 x I_{LIMIT}. When the fault condition is removed, the current limit is set back to I_{LIMIT}. Refer to Output Short-Circuit Fast-Loop Response and Output Over-Load

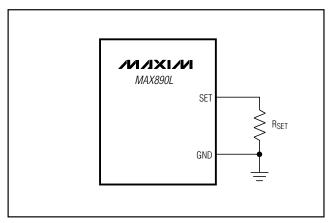


Figure 2. Setting the Current Limit

Slow-Loop Response in the *Typical Operating Characteristics*.

Thermal Shutdown

The MAX890L features thermal shutdown. The switch turns off when the junction temperature exceeds +135°C. Once the device cools by 10°C, the switch turns back on. If the fault short-circuit condition is not removed, the switch will cycle on and off, resulting in a pulsed output.

Fault Indicator

The MAX890L provides a fault output ($\overline{\text{FAULT}}$). This open-drain output goes low when in current limit or when the die temperature exceeds +135°C. A 100k Ω pull-up resistor from FAULT to IN provides a logic-control signal.

_Applications Information

Input Capacitor

To limit the input voltage drop during momentary output short-circuit conditions, connect a capacitor from IN to GND. A 1µF ceramic capacitor will be adequate for

most applications; however, higher capacitor values will further reduce the voltage drop at the input.

Output Capacitor

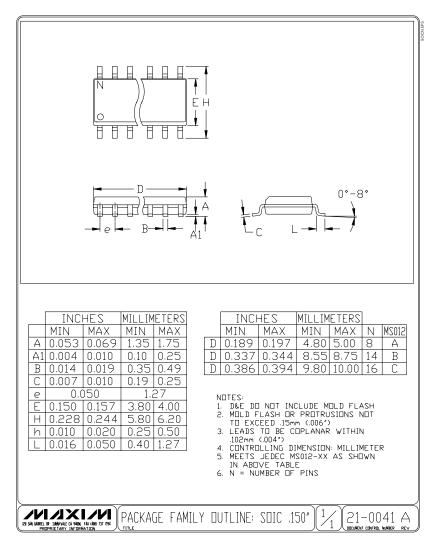
Connect a $0.1\mu F$ capacitor from OUT to GND. One function of this capacitor is to prevent inductive parasitics from pulling OUT negative during turn-off.

Layout and Thermal-Dissipation Consideration

To take full advantage of the switch-response time to output short-circuit conditions, it is very important to keep all traces as short as possible to reduce the effect of undesirable parasitic inductance. Place input and output capacitors as close as possible to the device (no more than 5mm).

Under normal operating conditions, the package can dissipate and channel heat away. Calculate the maximum power as follows:

$$P = I^2LIMIT \times RON$$


where RON is the on-resistance of the switch.

When the output is short circuited, the voltage drop across the switch equals the input supply. Hence, the power dissipated across the switch increases, as does the die temperature. If the fault condition is not removed, the thermal-overload-protection circuitry turns the switch off until the die temperature falls by 10°C. A ground plane in contact with the device will help dissipate additional heat.

Chip Information

TRANSISTOR COUNT: 396

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2000 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.