FPF1013 / FPF1014

IntelliMAX ${ }^{\text {TM }}$ 1V-Rated Advanced Load Management Products

Features

■ 0.8 V to 1.8 V Input Voltage Range
■ Typical $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=17 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{ON}}-\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$

- Output Discharge Function
- Internal Pull-Down at ON Pin
- Accurate Slew Rate Controlled Turn-on Time
- Low < $1 \mu \mathrm{~A}$ Quiescent Current

■ ESD Protected, above 8000V HBM, 2000V CDM

Applications

- PDAs
- Cell Phones
- GPS Devices
- MP3 Players

■ Digital Cameras

- Notebook Computers

General Description

The FPF1013/4 series is an IntelliMAX ${ }^{\text {TM }}$ advanced slew rate load switch offering very low operating voltage. These devices consist of a $17 \mathrm{~m} \Omega \mathrm{~N}$-channel MOSFET that supports an input voltage up to 2.0 V . These slew-rate devices control the switch turn-on and prevent excessive inrush current from supply rails. The input voltage range operates from 0.8 V to 1.8 V to fulfill today's lowest ultra-portable device supply requirements. Switch control is via a logic input (ON) capable of interfacing directly with low-voltage control signals.

The FPF1014 has an on-chip pull-down, allowing for quick and controlled output discharge when the switch is turned off. The FPF1013/4 series is available in a space-saving six-lead $1 \mathrm{~mm} x$ 1.5 mm Wafer-Level Chip-Scale Package (WLCSP).

BOTTOM

TOP

Typical Application Circuit

Ordering Information

Part	Switch	Turn-on Time	Output Discharge	ON Pin Activity	Package
FPF1013	$17 \mathrm{~m} \Omega$, NMOS	$43 \mu \mathrm{~s}$	N/A	Active HIGH	WLCSP1X1.5
FPF1014	$17 \mathrm{~m} \Omega$, NMOS	$43 \mu \mathrm{~s}$	60Ω	Active HIGH	WLCSP1X1.5

Functional Block Diagram

Pin Configuration

$1.0 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ WLCSP Bottom View

Pin Description

Pin	Name	Function
A2, B2	$\mathrm{V}_{\text {IN }}$	Supply Input: Input to the power switch and the supply voltage for the IC
C2	ON	ON Control Input
A1, B1	V OUT	Switch Output: Output of the power switch
C1	GND	Ground

Absolute Maximum Ratings

Symbol	Parameter	Min.	Max.	Units
	$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$, to GND	-0.3	2.0	V
	$\mathrm{~V}_{\text {ON }}$ to GND	-0.3	4.2	V
I_{SW}	Maximum Continuous Switch Current		1.5	A
P_{D}	Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(1)}$		1.2	W
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$
J_{A}	Thermal Resistance, Junction to Ambient		85	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Protection	Human Body Model	8000	
		Charged Device Model	2000	

Note 1: Package power dissipation on one-square-inch pad, 2 oz. copper board.
Recommended Operating Range

Symbol	Parameter	Min.	Max.	Units
V_{IN}	Supply Voltage	0.8	1.8	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics
$\mathrm{V}_{I N}=0.8$ to $1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{V}_{I N}=1.8 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
Basic Operation						
$\mathrm{V}_{\text {IN }}$	Operating Voltage		0.8		1.8	V
$\mathrm{V}_{\text {ON(MIN })}$	ON Input Voltage	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	1.8	2.8	4.0	V
$\mathrm{V}_{\text {ON(MAX) }}$		$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$ (Note 2)	2.8	3.8	4.0	V
$I_{\text {cc }}$	Operating Current	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=$ Open			1	$\mu \mathrm{A}$
I_{Q}	Quiescent Current	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=$ Open			2	$\mu \mathrm{A}$
ISWOFF	Off Switch Current	$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=\mathrm{GND}$			2	$\mu \mathrm{A}$
R_{ON}	On-Resistance	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25 \mathrm{C}$		17	27	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=2.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		25	38	
$\mathrm{R}_{\text {PD }}$	Output Pull Down Resistance	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},$ FPF1014		60	120	Ω
$\mathrm{V}_{\text {IL }}$	ON Input Logic Low Voltage	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$			0.3	V
		$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$			0.8	
IoN	On Input Leakage	$\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {IN }}$ or GND			1	$\mu \mathrm{A}$

Dynamic $\left(\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

t_{R}	$\mathrm{V}_{\text {OUT }}$ Rise Time	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$	28	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=3.3 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}$	38	
t_{ON}	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$	43	$\mu \mathrm{s}$
		$\mathrm{R}_{\mathrm{L}}=3.3 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}$	58	
$t_{\text {F }}$	$V_{\text {Out }}$ Fall Time	FPF1014, $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$	14	$\mu \mathrm{s}$
		FPF1014, $\mathrm{R}_{\mathrm{L}}=3.3 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}$	76	
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	FPF1014, $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$	50	$\mu \mathrm{s}$
		FPF1014, $\mathrm{R}_{\mathrm{L}}=3.3 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}$	96	

Note 2: $\mathrm{V}_{\mathrm{ON}(\mathrm{MAX})}$ is limited by the absolute rating.

Typical Characteristics

Figure 1. Supply Current vs. V_{IN}

Figure 3. Operating Current vs. Temperature

Figure 5. Ron vs. Temperature

Figure 2. Off Quiescent Current vs. Temperature

Figure 4. Off Switch Current vs. Temperature

Figure 6. R_{ON} vs. $\mathrm{V}_{\mathrm{ON}} \mathrm{V}_{\mathrm{IN}}$

Typical Characteristics

Figure 7. V_{IL} vs. V_{IN}

Figure 9. $\mathrm{T}_{\text {RISE }} / \mathrm{T}_{\text {FALL }}$ vs. Temperature

Figure 11. FPF1013/4 Turn ON Response

Figure 8. V_{IL} vs. Temperature

Figure 10. $\mathrm{T}_{\mathrm{ON}} / \mathrm{T}_{\mathrm{OFF}}$ Vs. Temperature

Figure 12. FPF1014 Turn OFF Response

Typical Characteristics

Figure 13. FPF1013/4 Turn ON Response

Figure 15. FPF1014 Output Pull-down Response

Figure 14. FPF1014 Turn OFF Response

Description of Operation

The FPF1013/4 are low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{N}$-Channel load switches with controlled turn-on. The core of each device is a $17 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathrm{IN}}=1 \mathrm{~V}\right.$, $\mathrm{V}_{\mathrm{ON}}=3 \mathrm{~V}$) N -Channel MOSFET and is customized for a low input operating range of 0.8 to 1.8 V . The ON pin controls the state of the switch.
The FPF1014 contains a 60Ω (typ) on-chip resistor which is connected internally from $\mathrm{V}_{\text {OUt }}$ to GND for quick output discharge when the switch is turned off.

On/Off Control

The ON pin is active high and it controls the state of the switch. Applying a continuous high signal will hold the switch in the ON state. In order to minimize the switch on resistance, the ON pin voltage should exceed the input voltage by 2 V . This device is compatible with a GPIO (General Purpose Input/Output) port, where the logic voltage level can be configured to $4 \mathrm{~V} \geq \mathrm{V}_{\mathrm{ON}} \geq$ $\mathrm{V}_{\mathrm{IN}}+2 \mathrm{~V}$ and power consumed is less than $1 \mu \mathrm{~A}$ in steady state.

Timing Diagram

Application Information

Typical Application

Input Capacitor

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns-on, a capacitor must be placed between V_{IN} and GND. For minimized voltage drop, especially when the operating voltage approaches 1 V a $10 \mu \mathrm{~F}$ ceramic capacitor should be placed close to the $\mathrm{V}_{\text {IN }}$ pins. Higher values of C_{IN} can be used to further reduce the voltage drop during higher current modes of operation.

Output Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor, C_{L}, should be placed between $\mathrm{V}_{\mathrm{OUT}}$ and GND. This capacitor will prevent parasitic board inductance from forcing $\mathrm{V}_{\text {OUT }}$ below GND when the switch turns-off. If the application has a capacitive load, the FPF1014 can be used to discharged that load through an on-chip output discharge path.

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces or large copper planes for all pins $\left(\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT }}\right.$, ON and GND) will help minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

Improving Thermal Performance

An improper layout could result in higher junction temperature. This concern applies when continuous operation current is set to maximum allowed current and switch turns into a large capacitive load that introduce high inrush current in the transient. Since FPF1013/4 does not have thermal shutdown feature a proper layout can essentially reduce power dissipation of the switch in transient and prevents switch to exceed the maximum absolute power dissipation of 1.2 W .

The $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUt }}$ and GND pins will dissipate most of the heat generated during a high load current condition. The layout suggested in Figure 16 provides each pin with adequate copper so that heat may be transferred as efficiently as possible out of the device. The ON pin trace may be laid-out diagonally from the device to maximize the area available to the ground pad. Placing the input and output capacitors as close to the device as possible also contributes to heat dissipation, particularly during high load currents.

Figure 16: Proper Layout of Output, Input, land Ground Copper Area

Demonstration Board Layout

FPF1013/4 demonstration board has the components and circuitry to demonstrate the load switches functions. Thermal performance is improved using a few techniques recommended in the layout recommendations section of datasheet.

Figure 17. FPF1013/4 Demonstration Board Layout

Dimensional Outline and Pad Layout

TOP VIEW

RECOMMENDED LAND PATTERN
(NSMD PAD TYPE)

SIDE VIEWS

NOTES:

A. NO JEDEC REGISTRATION APPLIES.

BOTTOM VIEW
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS AND TOLERANCE PER ASMEY14.5M, 1994.
D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
E. PACKAGE NOMINAL HEIGHT IS 582 MICRONS ± 43 MICRONS (539-625 MICRONS).
F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
G. DRAWING FILNAME: MKT-UC006AFrev2.

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the mostrecent package drawings: http://www.fairchildsemi.com/packaging/.

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowertm	F-PFS ${ }^{\text {TM }}$	Power-SPM ${ }^{\text {TM }}$	SYSTEM ** GENERAL
Auto-SPM ${ }^{\text {™ }}$	FRFET ${ }^{\text {® }}$	PowerTrench ${ }^{\text {® }}$	GGENERAL The Power Franchise ${ }^{\circledR}$
Build it Now ${ }^{\text {TM }}$	Global Power Resource ${ }^{\text {SM }}$	Power $\times S^{\text {TM }}$	
CorePLUS ${ }^{\text {™ }}$	Green FPS ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {Tm }}$	${ }_{0}$ Wer
CorePOWER ${ }^{\text {™ }}$	Green FPS ${ }^{\text {™ }} \mathrm{e}-$ Series $^{\text {™ }}$	QFET ${ }^{\text {® }}$	franchise
CROSSVOLTTM	Gmax ${ }^{\text {m }}$	QS ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {™ }}$
CTL'm	GTOm	Quiet Series ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {m }}$
Current Transfer Logic ${ }^{\text {m }}$	IntellimAXTM	RapidConfigure ${ }^{\text {™ }}$	TinyCalc ${ }^{\text {TM }}$
DEUXPEED ${ }^{\text {® }}$	ISOPLANARTM	() ${ }^{\text {m/ }}$	TinyLogic ${ }^{\text {(}}$
Dual Cool ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {™ }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{N} / \mathrm{kN}$ at a time ${ }^{\text {TM }}$	TINYOPTOTM
Ecospark ${ }^{\text {® }}$	MICROCOUPLER ${ }^{\text {™ }}$	SignalWisetm	TinyPowertm
EfficientMax ${ }^{\text {™ }}$	MicroFET ${ }^{\text {TM }}$	SmartMax ${ }^{\text {™ }}$	TinyPMM ${ }^{\text {™ }}$
ESBC'm	MicroPak ${ }^{\text {m }}$	SMART START ${ }^{\text {TM }}$	Tiny Mire ${ }^{\text {TM }}$
-	MicroPak2 ${ }^{\text {Tm }}$	SPM^{\circledR}	TriFault Detect ${ }^{\text {TM }}$
Fairchild ${ }^{\text {® }}$	MillerDrive ${ }^{\text {m }}$	STEALTH ${ }^{\text {™ }}$	TRUECURRENTTM*
Fairchild Semiconductor ${ }^{\text {® }}$	MotionMax ${ }^{\text {™ }}$	SuperFET ${ }^{\text {® }}$	μ SerDes ${ }^{\text {TM }}$
FACT Quiet Series ${ }^{\text {™ }}$	Motion-SPM ${ }^{\text {TM }}$	SuperSOTM-3	M
$\mathrm{FACT}^{\text {® }}$	OptoHiT ${ }^{\text {TM }}$	SuperSOTTM-6	SerDes ${ }^{-}$
FAST ${ }^{\text {® }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOTTM-8	UHC ${ }^{\text {U }}$
FastvCore ${ }^{\text {m }}$	OPTOPLANAR	SupreMOS ${ }^{\text {® }}$	Ultra FRFET
FETBench ${ }^{\text {™ }}$		SyncFETTM	UniFETm
FlashWriter ${ }^{\text {®** }}$		Sync-Lock ${ }^{\text {TM }}$	VCX ${ }^{\text {Tm }}$
FPS ${ }^{\text {m }}$	PDP SPM ${ }^{\text {TM }}$		VisualMax ${ }^{\text {TM }}$ $X S^{T M}$

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RGHT TO MAKE CHANGES WTHOUT FURTHER NOTCE TO ANY PRODUCTS HEREIN TOIMPROVE RELIABILTY, FUNCTON, OR DESIGN. FAIRCHILDDOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPUCATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NORTHE RIGHTS OF OTHERS. THESE SPECFICATIONS DONOT EXPAND THE TERMS OF FAIRCHID'S WORLDMDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WTHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTORCORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semionductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, whev.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performanoe, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly fromFairchild or from Authorized Fairchild Distributors who are listed by country on our neb page dited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and enoourage our customers to do their part in stopping this practiœe by buying direct or from authorized distributors.

PRODUCT STA TUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	\quad Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

