0.5A DUAL CHANNEL CURRENT-LIMITED POWER
 SWITCH

Features

- Dual USB port power switches
- Over-current and thermal protection
- 0.8A accurate current limiting
- Reverse Current Blocking
- $115 \mathrm{~m} \Omega$ on-resistance
- Input voltage range: $2.7 \mathrm{~V}-5.5 \mathrm{~V}$
- 0.6 ms typical rise time
- Very low shutdown current: 1uA (max)
- Fault report (FLG) with blanking time (7ms typ)
- ESD protection: 4.5KV HBM, 350V MM
- Active high (AP2152) or active low (AP2142) enable
- Ambient temperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- SOP-8L and MSOP-8L-EP (Exposed Pad): Available in "Green" Molding Compound (No Br, Sb)
- Lead Free Finish / RoHS Compliant (Note 1)
- UL Recognized, File Number E322375
- IEC60950-1 CB Scheme Certified

Description

The AP2142 and AP2152 are integrated high-side power switches optimized for Universal Serial Bus (USB) and other hot-swap applications. The family of devices complies with USB 2.0 and available with both polarities of Enable input. They offer current and thermal limiting and short circuit protection as well as controlled rise time and under-voltage lockout functionality. A 7 ms deglitch capability on the open-drain Flag output prevents false over-current reporting and does not require any external components.

All devices are available in SOP-8L and MSOP-8L-EP packages.

Applications

- Consumer electronics - LCD TV \& Monitor, Game Machines
- Communications - Set-Top-Box, GPS, Smartphone
- Computing - Laptop, Desktop, Servers, Printers, Docking Station, HUB

Ordering Information

Device	Package Code	$\begin{aligned} & \hline \text { Packaging } \\ & \text { (Note 2) } \\ & \hline \end{aligned}$	13" Tape and Reel	
			Quantity	Part Number Suffix
ค) AP21X2SG-13	S	SOP-8L	2500/Tape \& Reel	-13
®) AP21X2MPG-13	MP	MSOP-8L-EP	2500/Tape \& Reel	-13

Notes: 1. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied. Please visit our website at http://www.diodes.com/products/lead free.html.
2. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

0.5A DUAL CHANNEL CURRENT-LIMITED POWER SWITCH

Pin Assignment

Pin Descriptions

Pin Name	Pin Number	Descriptions
GND	1	Ground
IN	2	Voltage input pin
EN1	3	Switch 1 enable input, active low (AP2142) or active high (AP2152)
EN2	4	Switch 2 enable input, active low (AP2142) or active high (AP2152)
FLG2	5	Switch 2 over-current and over-temperature fault report; open-drain flag is active low when triggered
OUT2	6	Switch 2 voltage output pin
OUT1	7	Switch 1 voltage output pin
FLG1	8	Switch 1 over-current and over-temperature fault report; open-drain flag is active low when triggered

Functional Block Diagram

Typical Application Circuit

AP2152 Enable Active High

Available Options

Part Number	Channel	Enable pin (EN)	Current limit (typical)	Recommended maximum continuous load current
AP2142	2	Active Low	0.8 A	0.5 A
AP2152	2	Active High	0.8 A	0.5 A

0.5A DUAL CHANNEL CURRENT-LIMITED POWER SWITCH

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Units
ESD HBM	Human Body Model ESD Protection	3	KV
ESD MM	Machine Model ESD Protection	300	V
$\mathrm{~V}_{\text {IN }}$	Input Voltage	6.5	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\text {IN }}+0.3$	V
$\mathrm{~V}_{\text {EN }}, \mathrm{V}_{\text {FLG }}$	Enable Voltage	6.5	V
$\mathrm{I}_{\text {load }}$	Maximum Continuous Load Current	Internal Limited	A
$\mathrm{T}_{\text {Jmax }}$	Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {ST }}$	Storage Temperature Range (Note 3)	-65 to 150	${ }^{\circ} \mathrm{C}$

Notes: 3. UL Recognized Rating from $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (Diodes qualified T_{ST} from $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$)

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
$\mathrm{V}_{\mathbb{I N}}$	Input voltage	2.7	5.5	V
$\mathrm{I}_{\text {OUT }}$	Output Current	0	500	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature	-40	85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1 \mathrm{~N}}=+5.0 \mathrm{~V}$, unless otherwise stated)

Symbol	Parameter	Test Conditions	Min	Typ.	Max	Unit
Vuvio	Input UVLO	$\mathrm{R}_{\text {load }}=1 \mathrm{k} \Omega$	1.6	1.9	2.5	V
$\mathrm{I}_{\text {SHIN }}$	Input Shutdown Current	Disabled, lout 0		0.5	1	$\mu \mathrm{A}$
le	Input Quiescent Current, Dual	Enabled, lout $=0$		100	160	$\mu \mathrm{A}$
ILEAK	Input Leakage Current	Disabled, OUT grounded			1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {REV }}$	Reverse Leakage Current	Disabled, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {REV }}$ at $\mathrm{V}_{\text {IN }}$		1		$\mu \mathrm{A}$
R $\mathrm{DS}_{(0 \mathrm{~N})}$	Switch on-resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}_{\mathrm{N}}=5 \mathrm{~V}, \text { Iout }=0.5 \mathrm{~A},} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$		115	150	$\mathrm{m} \Omega$
				120	160	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$, lout $=0.5 \mathrm{~A},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		140	180	$\mathrm{m} \Omega$
Ishort	Short-circuit current limit	Enabled into short circuit, $\mathrm{C}_{\mathrm{L}}=68 \mu \mathrm{~F}$		0.6		A
ILIMIT	Over-Load Current Limit	$\begin{aligned} & V_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {Out }}=4.8 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=68 \mu \mathrm{~F},-40^{\circ} \mathrm{C} \leq \\ & \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	0.6	0.8	1.0	A
$I_{\text {tig }}$	Current limiting trigger threshold	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}$, Output Current Slew rate ($<100 \mathrm{~A} / \mathrm{s}$), $\mathrm{C}_{\mathrm{L}}=68 \mu \mathrm{~F}$		1.0		A
VIL	EN Input Logic Low Voltage	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$ to 5.5 V			0.8	V
V_{IH}	EN Input Logic High Voltage	$\mathrm{V}_{1 /}=2.7 \mathrm{~V}$ to 5.5 V	2			V
Isİk	EN Input leakage	$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$			1	$\mu \mathrm{A}$
$\mathrm{T}_{\mathrm{D} \text { (ON) }}$	Output turn-on delay time	$\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{R}_{\text {load }}=10 \Omega$		0.05		ms
T_{R}	Output turn-on rise time	$\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{R}_{\text {load }}=10 \Omega$		0.6	1.5	ms
$\mathrm{T}_{\text {D(OFF) }}$	Output turn-off delay time	$\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{R}_{\text {load }}=10 \Omega$		0.01		ms
$\mathrm{T}_{\text {F }}$	Output turn-off fall time	$\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{R}_{\text {load }}=10 \Omega$		0.05	0.1	ms
$\mathrm{R}_{\text {FLG }}$	FLG output FET on-resistance	$\mathrm{IFLG}^{\text {che }}=10 \mathrm{~mA}$		30	50	Ω
$\mathrm{T}_{\text {Blank }}$	FLG blanking time	$\mathrm{C}_{1 \times}=10 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{L}}=68 \mu \mathrm{~F}$	4	7	15	ms
$\mathrm{T}_{\text {SHON }}$	Thermal shutdown threshold	Enabled, $\mathrm{R}_{\text {load }}=1 \mathrm{k} \Omega$		140		${ }^{\circ} \mathrm{C}$
THys	Thermal shutdown hysteresis			25		${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance Junction-to-Ambient	SOP-8L (Note 4)		110		${ }^{\circ} \mathrm{C} / \mathrm{W}$
		MSOP-8L-EP (Note 5)		60		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes: 4. Test condition for SOP-8L: Device mounted on FR-4 2-layer board, 2 oz copper, with minimum recommended pad layout.
5. Test condition for MSOP-8L-EP: Device mounted on FR-4 2-layer board, $20 z$ copper, with minimum recommended pad on top layer and 3 vias to bottom layer ground plane.

0.5A DUAL CHANNEL CURRENT-LIMITED POWER SWITCH

Typical Performance Characteristics

Figure 1. Voltage Waveforms: AP2142 (left), AP2152 (right)
All Enable Plots are for AP2142 Active Low

Channel 2 Turn-On Delay and Rise Time

Channel 2 Turn-Off Delay and Fall Time

0.5A DUAL CHANNEL CURRENT-LIMITED POWER SWITCH

Typical Performance Characteristics (Continued)

Channel 1 Turn-On Delay and Rise Time

Channel 2 Turn-On Delay and Rise Time

Channel 1 Short Circuit Current, Device Enabled Into Short

Channel 1 Turn-Off Delay and Fall Time

500us/div
Channel 2 Turn-Off Delay and Fall Time

500us/div
Channel 2 Short Circuit Current, Device Enabled Into Short

0.5A DUAL CHANNEL CURRENT-LIMITED POWER SWITCH

Typical Performance Characteristics (Continued)

Channel 1 Inrush Current

Channel 1
1Ω Load Connected to Enabled Device

Channel 2
1Ω Load Connected to Enabled Device

Channel 2 Inrush Current

Channel 1
2Ω Load Connected to Enabled Device

Channel 2
2Ω Load Connected to Enabled Device

0.5A DUAL CHANNEL CURRENT-LIMITED POWER SWITCH

Typical Performance Characteristics (Continued)

Channel 1
Short Circuit with Blanking Time and Recovery

$20 \mathrm{~ms} / \mathrm{div}$
Channel 1 Power On

Channel 1 UVLO Increasing

Channel 2 Short Circuit with Blanking Time and Recovery

20ms/div

1ms/div
Channel 1 UVLO Decreasing

Typical Performance Characteristics (Continued)

Typical Performance Characteristics (Continued)

0.5A DUAL CHANNEL CURRENT-LIMITED POWER SWITCH

Typical Performance Characteristics (Continued)

Application Note

Power Supply Considerations

A $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ X7R or X5R ceramic bypass capacitor between IN and GND, close to the device, is recommended. Placing a high-value electrolytic capacitor on the input and output pin(s) is recommended when the output load is heavy. This precaution reduces power-supply transients that may cause ringing on the input. Additionally, bypassing the output with a $0.01-\mu \mathrm{F}$ to $0.1-\mu \mathrm{F}$ ceramic capacitor improves the immunity of the device to short-circuit transients.

Over-current and Short Circuit Protection

An internal sensing FET is employed to check for over-current conditions. Unlike current-sense resistors, sense FETs do not increase the series resistance of the current path. When an overcurrent condition is detected, the device maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs only if the fault stays long enough to activate thermal limiting.

Three possible overload conditions can occur. In the first condition, the output has been shorted to GND before the device is enabled or before Vin has been applied. The AP2142/AP2152 senses the short circuit and immediately clamps output current to a certain safe level namely $\mathrm{I}_{\text {LImit }}$

In the second condition, an output short or an overload occurs while the device is enabled. At the instance the overload occurs, higher current may flow for a very short period of time before the current limit function can react. After the current limit function has tripped (reached the over-current trip threshold), the device switches into current limiting mode and the current is clamped at $\mathrm{I}_{\mathrm{LIMIT}}$.

In the third condition, the load has been gradually increased beyond the recommended operating current. The current is permitted to rise until the current-limit threshold ($l_{\text {TRIG }}$) is reached or until the thermal limit of the device is exceeded. The AP2142/AP2152 is capable of delivering current up to the current-limit threshold without damaging the device. Once the threshold has been reached, the device switches into its current limiting mode and is set at llimit.

FLG Response

When an over-current or over-temperature shutdown condition is encountered, the FLG open-drain output goes active low after a nominal 7 -ms deglitch timeout. The FLG output remains low until both over-current and over-temperature conditions are removed. Connecting a heavy capacitive load to the output of the device can cause a momentary over-current condition, which does not trigger the FLG due to the 7-ms deglitch timeout. The AP2142/AP2152 is designed to eliminate false over-current reporting without the need of external components to remove unwanted pulses.

Power Dissipation and Junction Temperature

The low on-resistance of the internal MOSFET allows the small surface-mount packages to pass large current. Using the maximum operating ambient temperature $\left(T_{A}\right)$ and $\operatorname{Rds}(O N)$, the power dissipation can be calculated by:
$\mathrm{PD}=\operatorname{RDS}(\mathrm{ON}) \times 1^{2}$
Finally, calculate the junction temperature:

$$
T_{J}=P_{D} \times R_{\theta J A}+T_{A}
$$

Where:
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature ${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {өJA }}=$ Thermal resistance
$P_{D}=$ Total power dissipation

Application Note (Continued)

Thermal Protection

Thermal protection prevents the IC from damage when heavy-overload or short-circuit faults are present for extended periods of time. The AP2142/AP2152 implements a thermal sensing to monitor the operating junction temperature of the power distribution switch. Once the die temperature rises to approximately $140^{\circ} \mathrm{C}$ due to excessive power dissipation in an over-current or short-circuit condition the internal thermal sense circuitry turns the power switch off, thus preventing the power switch from damage. Hysteresis is built into the thermal sense circuit allowing the device to cool down approximately $25^{\circ} \mathrm{C}$ before the switch turns back on. The switch continues to cycle in this manner until the load fault or input power is removed. The FLG open-drain output is asserted when an over-temperature shutdown or over-current occurs with 7-ms deglitch.

Under-voltage Lockout (UVLO)

Under-voltage lockout function (UVLO) keeps the internal power switch from being turned on until the power supply has reached at least 1.9 V , even if the switch is enabled. Whenever the input voltage falls below approximately 1.9 V , the power switch is quickly turned off. This facilitates the design of hot-insertion systems where it is not possible to turn off the power switch before input power is removed.

Host/Self-Powered HUBs

Hosts and self-powered hubs (SPH) have a local power supply that powers the embedded functions and the downstream ports (see Figure 2). This power supply must provide from 5.25 V to 4.75 V to the board side of the downstream connection under both full-load and no-load conditions. Hosts and SPHs are required to have current-limit protection and must report over-current conditions to the USB controller. Typical SPHs are desktop PCs, monitors, printers, and stand-alone hubs.

Figure 2. Typical Two-Port USB Host / Self-Powered Hub

Generic Hot-Plug Applications

In many applications it may be necessary to remove modules or pc boards while the main unit is still operating. These are considered hot-plug applications. Such implementations require the control of current surges seen by the main power supply and the card being inserted. The most effective way to control these surges is to limit and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply normally turns on. Due to the controlled rise times and fall times of the AP2142/AP2152, these devices can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature of the AP2142/AP2152 also ensures that the switch is off after the card has been removed, and that the switch is off during the next insertion.

By placing the AP2142/AP2152 between the Vcc input and the rest of the circuitry, the input power reaches these devices first after insertion. The typical rise time of the switch is approximately 1 ms , providing a slow voltage ramp at the output of the device. This implementation controls system surge current and provides a hot-plugging mechanism for any device.

Marking Information

(1) SOP-8L

(2) MSOP-8L-EP

Package Information (All Dimensions in mm)

(1) Package type: SOP-8L

(3) Package type: MSOP-8L-EP

0.5A DUAL CHANNEL CURRENT-LIMITED POWER SWITCH

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT
Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.

