Bipolar IC

Overview

Features

- $2 \times 0.75 \mathrm{~A} / 50 \mathrm{~V}$ outputs
- Integrated driver, control logic and current control (chopper)
- Fast free-wheeling diodes
- Low standby-current drain

- Full, half, quarter, mini step

Type	Ordering Code	Package
TLE 4726 G	Q67006-A9297	P-DSO-24-3

Description

TLE 4726 is a bipolar, monolithic IC for driving bipolar stepper motors, DC motors and other inductive loads that operate on constant current. The control logic and power output stages for two bipolar windings are integrated on a single chip which permits switched current control of motors with 0.75 A per phase at operating voltages up to 50 V .
The direction and value of current are programmed for each phase via separate control inputs. A common oscillator generates the timing for the current control and turn-on with phase offset of the two output stages. The two output stages in a full-bridge configuration have integrated, fast free-wheeling diodes and are free of crossover current. The logic is supplied either separately with 5 V or taken from the motor supply voltage by way of a series resistor and an integrated Z-diode. The device can be driven directly by a microprocessor with the possibility of all modes from full step through half step to mini step.

Figure 1 Pin Configuration (top view)

TLE 4726

Pin No.	Function			
1, 2, 23, 24	Digital control inputs IX0, IX1 for the magnitude of the current of the particular phase.			
	IX1 IX0	Phase Current	Example of Motor Status	
	$\mathrm{H} \quad \mathrm{H}$	0	No current	
	$\mathrm{H} \quad \mathrm{L}$	1/3 $I_{\text {max }}$	Hold	pical $I_{\text {max }}$ with
		$2 / 3 I_{\text {max }}$	Set	$R_{\text {sense }}=1 \Omega: 750 \mathrm{~mA}$
	L L	$I_{\text {max }}$	Accelerate	
3	Input Phase 1; controls the current through phase winding 1. On H-potential the phase current flows from Q11 to Q12, on L-potential in the reverse direction.			
$\begin{aligned} & 5,6,7,8,17 \\ & 18,19,20 \end{aligned}$	Ground; all pins are connected internally.			
4	Oscillator; works at approx. 25 kHz if this pin is wired to ground across 2.2 nF .			
10	Resistor R_{1} for sensing the current in phase 1.			
9, 12	Push-pull outputs Q11, Q12 for phase 1 with integrated free-wheeling diodes.			
11	Supply voltage; block to ground, as close as possible to the IC, with a stable electrolytic capacitor of at least $10 \mu \mathrm{~F}$ in parallel with a ceramic capacitor of 220 nF .			
14	Logic supply voltage; either supply with 5 V or connect to $+V_{\mathrm{S}}$ across a series resistor. A Z-diode of approx. 7 V is integrated. In both cases block to ground directly on the IC with a stable electrolytic capacitor of $10 \mu \mathrm{~F}$ in parallel with a ceramic capacitor of 100 nF .			
13, 16	Push-pull outputs Q22, Q21 for phase 2 with integrated free-wheeling diodes.			
15	Resistor R_{2} for sensing the current in phase 2.			
21	Inhibit input; the IC can be put on standby by low potential on this pin. This reduces the current consumption substantially.			
22	Input phase 2; controls the current flow through phase winding 2. On H-potential the phase current flows from Q21 to Q22, on L potential in the reverse direction.			

TLE 4726

Figure 2 Block Diagram

Absolute Maximum Ratings

$T_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	$V_{\text {S }}$	0	52	V	-
Logic supply voltage	V_{L}	0	6.5	V	Z-diode
Z-current of V_{L}	I_{L}	-	50	mA	-
Output current	$I_{\text {Q }}$	-1	1	A	-
Ground current	$I_{\text {GND }}$	-2	2	A	-
Logic inputs	$V_{\text {lxx }}$	-6	$\begin{aligned} & V_{L}+ \\ & 0.3 \end{aligned}$	V	I_{xx}; Phase 1, 2; Inhibit
R_{1}, R_{2}, oscillator input voltage	$\begin{aligned} & V_{\mathrm{RX}}, \\ & V_{\mathrm{OSC}} \end{aligned}$	-0.3	$\begin{aligned} & V_{\mathrm{L}}+ \\ & 0.3 \end{aligned}$	V	-
Junction temperature	$\begin{aligned} & T_{\mathrm{j}} \\ & T_{\mathrm{j}} \end{aligned}$	$-$	$\begin{aligned} & 125 \\ & 150 \end{aligned}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$	$\max .10,000 \mathrm{~h}$
Storage temperature	$T_{\text {stg }}$	- 50	125	${ }^{\circ} \mathrm{C}$	-

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Range

Parameter	Symbol		Limit Values		Unit
		Remarks			
min.	max.				
Supply voltage	V_{S}	5	50	V	-
Logic supply voltage	V_{L}	4.5	6.5	V	without series resistor
Case temperature	T_{C}	-25	110	${ }^{\circ} \mathrm{C}$	measured on pin 5 $P_{\text {diss }}=2 \mathrm{~W}$
Output current	I_{Q}	-800	800	mA	-
Logic inputs	V_{IXX}	-5	V_{L}	V	$I_{\mathrm{XX}} ;$ Phase 1, 2; Inhibit

Thermal Resistances

Junction ambient					
Junction ambient (soldered on a					
$35 \mu \mathrm{~m}$ thick $20 \mathrm{~cm}^{2}$ PC boar copper area)	$R_{\text {th }}$ ja $R_{\text {th }}$ ja	-	-	75	K/W

Note: In the operating range, the functions given in the circuit description are fulfilled.

Characteristics

$V_{\mathrm{S}}=40 \mathrm{~V} ; V_{\mathrm{L}}=5 \mathrm{~V} ;-25^{\circ} \mathrm{C} \leq T_{\mathrm{j}} \leq 125^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Current Consumption

from $+V_{\mathrm{S}}$ from $+V_{\mathrm{S}}$	I_{S}	-	0.2	0.5	mA	$V_{\text {inh }}=\mathrm{L}$ I_{S}
from $+V_{\mathrm{L}}$ from $+V_{\mathrm{L}}$	-	16	20	mA	inh $=\mathrm{H}$ I_{L}	-
I_{L}	-	1.7	3	mA	$I_{\mathrm{Q} / 2}=0, I_{\mathrm{xX}}=\mathrm{L}$ $V_{\text {inh }}=\mathrm{L}$ $I_{\text {inh }}$	

Characteristics (cont'd)
$V_{\mathrm{S}}=40 \mathrm{~V} ; V_{\mathrm{L}}=5 \mathrm{~V} ;-25^{\circ} \mathrm{C} \leq T_{\mathrm{j}} \leq 125^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Oscillator						
Output charging	I_{OSC}	-	110	-	$\mu \mathrm{A}$	-
current						
Charging threshold	V_{OSCL}	-	1.3	-	V	-
Discharging threshold	V_{OSCH}	-	2.3	-	V	-
Frequency	f_{OSC}	18	25	40	kHz	$C_{\mathrm{OSC}}=2.2 \mathrm{nF}$

Phase Current Selection

Current Limit Threshold

No current	$V_{\text {sense }}$	-	0	-	mV	IX0 $=$ H; IX1 $=$ H
Hold	$V_{\text {sense } h}$	200	250	300	mV	IX0 $=$ L; IX1 $=$ H
Setpoint	$V_{\text {sense }}$	420	540	680	mV	IX0 $=$ H; IX1 $=$ L
Accelerate	$V_{\text {sense a }}$	700	825	950	mV	IX0 = L; IX1 = L

Logic Inputs

($\mathrm{I}_{\mathrm{x} 1} ; I_{\mathrm{x} 0} ;$ Phase x)

Threshold	V_{L}	1.4	-	2.3	V	-
L-input current	I_{LL}	-10	-	$(\mathrm{L} \rightarrow \mathrm{H})$	$\mu \mathrm{L}$	$V_{1}=1.4 \mathrm{~V}$
L -input current	I_{LL}	-100	-	-	$\mu \mathrm{A}$	$V_{\mathrm{I}}=0 \mathrm{~V}$
H-input current	I_{IH}	-	-	10	$\mu \mathrm{~A}$	$V_{\mathrm{I}}=5 \mathrm{~V}$

Standby Cutout (inhibit)

Threshold	$V_{\text {lnh }}$ $(\mathrm{L} \rightarrow \mathrm{H})$	2	3	4	V	-
Threshold	lnh $(\mathrm{H} \rightarrow \mathrm{L})$	1.7	2.3	2.9	V	-
$V_{\text {lnhhy }}$	0.3	0.7	1.1	V	-	

Internal Z-Diode

Z-voltage	V_{LZ}	6.5	7.4	8.2	V	$I_{\mathrm{L}}=50 \mathrm{~mA}$

Characteristics (cont'd)
$V_{\mathrm{S}}=40 \mathrm{~V} ; V_{\mathrm{L}}=5 \mathrm{~V} ;-25^{\circ} \mathrm{C} \leq T_{\mathrm{j}} \leq 125^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Power Outputs

Diode Transistor Sink Pair

(D13, T13; D14, T14; D23, T23; D24, T24)

Saturation voltage	$V_{\text {satl }}$	-	0.3	0.6	V	$I_{\mathrm{Q}}=-0.5 \mathrm{~A}$
Saturation voltage	$V_{\text {satl }}$	-	0.5	1	V	$I_{\mathrm{Q}}=-0.75 \mathrm{~A}$
Reverse current	I_{RI}	-	-	300	$\mu \mathrm{~A}$	$V_{\mathrm{Q}}=40 \mathrm{~V}$
Forward voltage	V_{FI}	-	0.9	1.3	V	$I_{\mathrm{Q}}=0.5 \mathrm{~A}$
Forward voltage	V_{FI}	-	1	1.4	V	$I_{\mathrm{Q}}=0.75 \mathrm{~A}$

Diode Transistor Source Pair
(D11, T11; D12, T12; D21, T21; D22, T22)

Saturation voltage	$V_{\text {satuc }}$	-	0.9	1.2	V	$I_{\mathrm{Q}}=0.5 \mathrm{~A} ;$ charge
Saturation voltage	$V_{\text {satuD }}$	-	0.3	0.7	V	$I_{\mathrm{Q}}=0.5 \mathrm{~A} ;$ discharge
Saturation voltage	$V_{\text {satuc }}$	-	1.1	1.4	V	$I_{\mathrm{Q}}=0.75 \mathrm{~A} ;$ charge
Saturation voltage	$V_{\text {satuD }}$	-	0.5	1	V	$I_{\mathrm{Q}}=0.75 \mathrm{~A} ;$ discharge
Reverse current	I_{Ru}	-	-	300	$\mu \mathrm{AA}$	$V_{\mathrm{Q}}=0 \mathrm{~V}$
Forward voltage	$V_{\text {Fu }}$	-	1	1.3	V	$I_{\mathrm{Q}}=-0.5 \mathrm{~A}$
Forward voltage	$V_{\text {Fu }}$	-	1.1	1.4	V	$I_{\mathrm{Q}}=-0.75 \mathrm{~A}$
Diode leakage current	I_{SL}	-	1	2	mA	$I_{\mathrm{F}}=-0.75 \mathrm{~A}$

Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_{A}=25^{\circ} \mathrm{C}$ and the given supply voltage.

TLE 4726

Quiescent Current $I_{\mathrm{S}}, I_{\mathrm{L}}$ versus Supply Voltage V_{s}

Quiescent Current $I_{\mathrm{S}}, I_{\mathrm{L}}$ versus Junction Temperature T_{j}

Output Current $I_{\text {QX }}$ versus Junction Temperature T_{j}

Operating Condition:

$$
\begin{aligned}
& V_{\mathrm{L}}=5 \mathrm{~V} \\
& V_{\text {Inh }}=\mathrm{H} \\
& C_{\mathrm{osc}}=2.2 \mathrm{nF} \\
& R_{\text {sense }}=1 \Omega \\
& \text { Load: } \mathrm{L}=10 \mathrm{mH} \\
&=2.4 \Omega \\
&=50 \mathrm{~Hz} \\
& f_{\text {phase }}=50 \\
& \text { mode: fullstep }
\end{aligned}
$$

Output Saturation Voltages $V_{\text {sat }}$ versus Output Current I_{Q}

Typical Power Dissipation $P_{\text {tot }}$ versus Output Current I_{Q} (Non Stepping)

Forward Current I_{F} of Free-Wheeling Diodes versus Forward Voltages V_{F}

Permissible Power Dissipation $P_{\text {tot }}$ versus Case Temperature T_{C}

Input Characteristics of I_{xx}, Phase X , Inhibit

Input Current of Inhibit versus Junction Temperature T_{j}

Oscillator Frequency $f_{\text {osc }}$ versus Junction Temperature T_{i}

TLE 4726

Figure 3 Test Circuit

Figure 4 Application Circuit

Figure 5 Full-Step Operation

Figure 6 Half-Step Operation

Figure 7 Quarter-Step Operation

Figure 8 Mini-Step Operation

$$
\begin{aligned}
& V_{\mathrm{S}}=40 \mathrm{~V} \\
& V_{\mathrm{L}}=5 \mathrm{~V} \\
& L_{\text {phase } \mathrm{x}}=10 \mathrm{mH} \\
& R_{\text {phase } \mathrm{x}}=20 \Omega \\
& V_{\text {phase } \mathrm{x}}=\mathrm{H} \\
& V_{\text {lnhibit }}=\mathrm{H} \\
& V_{\mathrm{xx}}=\mathrm{L}
\end{aligned}
$$

Figure 9 Current Control

TLE 4726

Figure 10 Phase Reversal and Inhibit

Calculation of Power Dissipation

The total power dissipation $P_{\text {tot }}$ is made up of
saturation losses $P_{\text {sat }}$ (transistor saturation voltage and diode forward voltages),
quiescent losses $P_{\mathrm{q}} \quad$ (quiescent current times supply voltage) and switching losses $P_{\mathrm{s}} \quad$ (turn-ON / turn-OFF operations).
The following equations give the power dissipation for chopper operation without phase reversal. This is the worst case, because full current flows for the entire time and switching losses occur in addition.
$P_{\text {tot }}=2 \times P_{\text {sat }}+P_{\mathrm{q}}+2 \times P_{\mathrm{s}}$
where

$$
\begin{aligned}
& P_{\text {sat }} \cong I_{\mathrm{N}}\left\{V_{\text {satl }} \times d+V_{\mathrm{Fu}}(1-d)+V_{\text {satuc }} \times d+V_{\text {satuD }}(1-d)\right\} \\
& P_{\mathrm{q}}=I_{\mathrm{q}} \times V_{\mathrm{S}}+I_{\mathrm{L}} \times V_{\mathrm{L}} \\
& P_{\mathrm{S}} \cong \frac{V_{\mathrm{S}}}{T}\left\{\frac{i_{\mathrm{D}} \times t_{\mathrm{DON}}}{2}+\frac{i_{\mathrm{D}}+i_{\mathrm{R}} \times t_{\mathrm{ON}}}{4}+\frac{I_{\mathrm{N}}}{2} t_{\mathrm{DOFF}}+t_{\mathrm{OFF}}\right\}
\end{aligned}
$$

$I_{\mathrm{N}} \quad=$ nominal current (mean value)
$I_{\mathrm{q}} \quad=$ quiescent current
$i_{\mathrm{D}} \quad=$ reverse current during turn-on delay
$i_{\mathrm{R}} \quad=$ peak reverse current
$t_{\mathrm{p}} \quad=$ conducting time of chopper transistor
$t_{\mathrm{ON}}=$ turn-ON time
$t_{\text {OFF }}=$ turn-OFF time
$t_{\text {DON }}=$ turn-ON delay
$t_{\text {DOFF }}=$ turn-OFF delay
T = cycle duration
$d \quad=$ duty cycle t_{p} / T
$V_{\text {satl }}=$ saturation voltage of sink transistor (T3, T4)
$V_{\text {satuc }}=$ saturation voltage of source transistor (T1, T2) during charge cycle
$V_{\text {satud }}=$ saturation voltage of source transistor (T1, T2) during discharge cycle
$V_{\mathrm{Fu}}=$ forward voltage of free-wheeling diode (D1, D2)
$V_{\mathrm{S}} \quad=$ supply voltage
$V_{\mathrm{L}} \quad=$ logic supply voltage
$I_{\mathrm{L}} \quad=$ current from logic supply

Figure 11

Figure 12

TLE 4726
technologies

Application Hints

The TLE 4726 is intended to drive both phases of a stepper motor. Special care has been taken to provide high efficiency, robustness and to minimize external components.

Power Supply

The TLE 4726 will work with supply voltages ranging from 5 V to 50 V at pin V_{S}. As the circuit operates with chopper regulation of the current, interference generation problems can arise in some applications. Therefore the power supply should be decoupled by a $0.22 \mu \mathrm{~F}$ ceramic capacitor located near the package. Unstabilized supplies may even afford higher capacities.

Current Sensing

The current in the windings of the stepper motor is sensed by the voltage drop across R_{1} and R_{2}. Depending on the selected current internal comparators will turn off the sink transistor as soon as the voltage drop reaches certain thresholds (typical $0 \mathrm{~V}, 0.25 \mathrm{~V}$, 0.5 V and 0.75 V$) ;\left(R_{1}, R_{2}=1 \Omega\right)$. These thresholds are neither affected by variations of V_{L} nor by variations of V_{S}.
Due to chopper control fast current rises (up to $10 \mathrm{~A} / \mu \mathrm{s}$) will occur at the sensing resistors R_{1} and R_{2}. To prevent malfunction of the current sensing mechanism R_{1} and R_{2} should be pure ohmic. The resistors should be wired to GND as directly as possible. Capacitive loads such as long cables (with high wire to wire capacity) to the motor should be avoided for the same reason.

Synchronizing Several Choppers

In some applications synchrone chopping of several stepper motor drivers may be desireable to reduce acoustic interference. This can be done by forcing the oscillator of the TLE 4726 by a pulse generator overdriving the oscillator loading currents (approximately $\pm 100 \mu \mathrm{~A}$). In these applications low level should be between 0 V and 1 V while high level should be between 2.6 V and V_{L}.

Optimizing Noise Immunity

Unused inputs should always be wired to proper voltage levels in order to obtain highest possible noise immunity.
To prevent crossconduction of the output stages the TLE 4726 uses a special break before make timing of the power transistors. This timing circuit can be triggered by short glitches (some hundred nanoseconds) at the Phase inputs causing the output stage to become high resistive during some microseconds. This will lead to a fast current decay during that time. To achieve maximum current accuracy such glitches at the Phase inputs should be avoided by proper control signals.

Thermal Shut Down

To protect the circuit against thermal destruction, thermal shut down has been implemented. To provide a warning in critical applications, the current of the sensing element is wired to input Inhibit. Before thermal shut down occurs Inhibit will start to pull down by some hundred microamperes. This current can be sensed to build a temperature prealarm.

Package Outlines

P-DSO-24-3

(Plastic Dual Small Outline Package)

1) Does not include plastic or metal protrusions of 0.15 max rer side
2) Does not include dambar protrusion of 0.05 max per side GPS05144

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our
Data Book "Package Information".

