16K (2K x 8)

CMOS

E²PROM

Features

- Fast Read Access Time 150 ns
- Fast Byte Write 200 μs or 1 ms
- Self-Timed Byte Write Cycle Internal Address and Data Latches Internal Control Timer Automatic Clear Before Write
- Direct Microprocessor Control DATA POLLING READY/BUSY Open Drain Output
- Low Power

30 mA Active Current 100 µa CMOS Standby Current

High Reliability

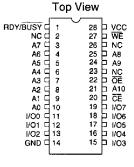
Endurance: 10⁴ or 10⁵ cycles Data Retention: 10 years

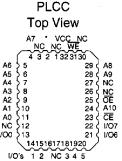
- 5 V ± 10% Supply
- CMOS & TTL Compatible Inputs and Outputs
- JEDEC Approved Byte Wide Pinout
- Full Military, Commercial, and Industrial Temperature Ranges

Description

The AT28C17 is a low-power, high-performance Electrically Erasable and Programmable Read Only Memory with easy to use features. The AT28C17 is a 16K memory organized as 2,048 words x 8 bits. The device is manufactured with Atmel's reliable nonvolatile CMOS technology.

The AT28C17 is accessed like a static RAM for the read or write cycles without the need of external components. During a byte write, the address and data are latched internally, freeing the microprocessor address and data bus for other operations. Following the initiation of a write cycle, the device will go to a busy state and automatically clear and write the latched data using an internal control timer. The device includes two methods for detecting the end of a write cycle, level detection of RDY/BUSY and DATA polling of I/O7. Once the end of a write cycle has been detected, a new access for a read or a write can begin.

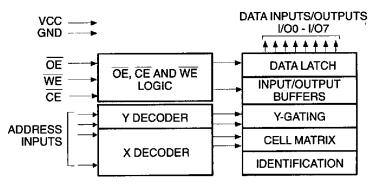

The CMOS technology offers fast access times of 150 ns at low power dissipation. When the chip is deselected the standby current is less than $100\,\mu\text{A}$.


Atmel's 28C17 has additional features to ensure high quality and manufacturability. The device utilizes error correction internally for extended endurance and for improved data retention characteristics. An extra 32 bytes of E²PROM are available for device identification or tracking.

Pin Configurations

Pin Name	Function
A0 - A10	Addresses
CE	Chip Enable
ŌĒ	Output Enable
WE	Write Enable
1/00 - 1/07	Data Inputs/Outputs
RDY/BUSY	Ready/Busy Output
NC	No Connect

CERDIP, PDIP, SOIC


* = RDY/BUSY

Note: PLCC package pins 1 and 17 are DON'T CONNECT.

Block Diagram

Absolute Maximum Ratings*

_	
	Temperature Under Bias55°C to +125°C Storage Temperature65°C to +150°C
	All Input Voltages (including N.C. Pins) with Respect to Ground0.6 V to +6.25 V
	All Output Voltages with Respect to Ground0.6 V to Vcc +0.6 V
	Voltage on OE and A9 with Respect to Ground0.6 V to +13.5 V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Device Operation

READ: The AT28C17 is accessed like a Static RAM. When \overline{CE} and \overline{OE} are low and \overline{WE} is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in a high impedance state whenever \overline{CE} or \overline{OE} is high. This dual line control gives designers increased flexibility in preventing bus contention.

BYTE WRITE: Writing data into the AT28C17 is similar to writing into a Static RAM. A low pulse on the \overline{WE} or \overline{CE} input with \overline{OE} high and \overline{CE} or \overline{WE} low (respectively) initiates a byte write. The address location is latched on the last falling edge of \overline{WE} (or \overline{CE}); the new data is latched on the first rising edge. Internally, the device performs a self-clear before write. Once a byte write has been started, it will automatically time itself to completion. Once a programming operation has been initiated and for the duration of twc, a read operation will effectively be a polling operation.

FAST BYTE WRITE: The AT28C17E offers a byte write time of $200 \,\mu s$ maximum. This feature allows the entire device to be rewritten in 0.4 seconds.

READY/BUSY: Pin 1 is an open drain READY/BUSY output that can be used to detect the end of a write cycle. RDY/BUSY is actively pulled low during the write cycle and is released at the completion of the write. The open drain connec-

tion allows for OR-tying of several devices to the same RDY/BUSY line.

DATA POLLING: The AT28C17 provides DATA POLL-ING to signal the completion of a write cycle. During a write cycle, an attempted read of the data being written results in the complement of that data for I/O7 (the other outputs are indeterminate). When the write cycle is finished, true data appears on all outputs.

WRITE PROTECTION: Inadvertent writes to the device are protected against in the following ways. (a) Vcc sense—if Vcc is below 3.8 V (typical) the write function is inhibited. (b) Vcc power on delay—once Vcc has reached 3.8 V the device will automatically time out 5 ms (typical) before allowing a byte write. (c) Write Inhibit—holding any one of \overline{OE} low, \overline{CE} high or \overline{WE} high inhibits byte write cycles.

CHIP CLEAR: The contents of the entire memory of the AT28C17 may be set to the high state by the CHIP CLEAR operation. By setting \overline{CE} low and \overline{OE} to 12 volts, the chip is cleared when a 10 msec low pulse is applied to \overline{WE} .

DEVICE IDENTIFICATION: An extra 32 bytes of E^2PROM memory are available to the user for device identification. By raising A9 to 12 ± 0.5 V and using address locations 7E0H to 7FFH the additional bytes may be written to or read from in the same manner as the regular memory array.

AT28C17

D.C. and A.C. Operating Range

		AT28C17-15	AT28C17-20	AT28C17-25
Oneseties	Com.	0°C - 70°C	0°C - 70°C	0°C - 70°C
Operating Temperature (Case)	Ind.	-40°C - 85°C	-40°C - 85°C	-40°C - 85°C
	Mil.	-55°C - 125°C	-55°C - 125°C	-55°C - 125°C
Vcc Power Supply		5 V ± 10%	5 V ± 10%	5V±10%

Operating Modes

Mode	CE	<u> </u>	1415	
Wode	CE	OE	WE	<u> </u>
Read	VIL	VIL	V _{IH}	Dout
Write ⁽²⁾	VIL	ViH	VIL	DIN
Standby/Write Inhibit	ViH	X ⁽¹⁾	X	High Z
Write Inhibit	X	Х	ViH	
Write Inhibit	X	V _{IL}	Х	
Output Disable	X	ViH	Х	High Z
Chip Erase	V _{IL}	VH (3)	VIL	High Z
ston 1 V 1 - 17 17				

Notes: 1. X can be V_{IL} or V_{IH} .

2. Refer to A.C. Programming Waveforms.

3. $V_H = 12.0 \text{ V} \pm 0.5 \text{ V}$.

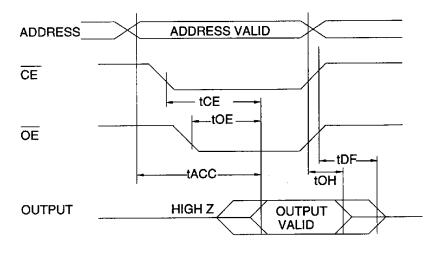
D.C. Characteristics

Symbol	Parameter	Condition		Min	Max	Units
ILI	Input Load Current	V _{IN} = 0 V to V _{CC} + 1 V		-	10	μА
<u>l</u> LO	Output Leakage Current	V _{I/O} = 0 V to V _{CC}			10	μА
ISB1	V _{CC} Standby Current CMOS	$\overline{\text{CE}} = \text{V}_{\text{CC}}\text{-}0.3 \text{ V to V}_{\text{CC}} + 1.0 \text{ V}$			100	μΑ
I _{SB2}	Vcc Standby Current TTL	$\overline{\text{CE}}$ = 2.0 V to V _{CC} + 1.0 V	Com.		2	mA
	100 Standby Suntin 112	OE = 2.0 V to VCC + 1.0 V	Ind., Mil.		3	mA
Icc	Vcc Active Current A.C.	$\underline{f} = 5 \text{ MHz}$; $I_{OUT} = 0 \text{ mA}$	Com.		30	mA
- 	VOO NOUVE GUITERI A.O.	CE = V _{IL}	ind., Mil.		45	mA
VIL	Input Low Voltage				0.8	V
V _{IH}	Input High Voltage			2.0		V
VoL	Output Low Voltage	loL = 2.1 mA = 4.0 for RDY/BUSY			.4	٧
Vон	Output High Voltage	IoH = -400 μA		2.4		٧

Pin Capacitance (f = 1 MHz, T = 25° C) (1)

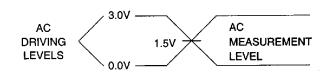
	Тур	Max	Units	Conditions
Cin	4	6	pF	Vin = 0 V
Cout	8	12	pF	Vout = 0 V

Note: 1. This parameter is characterized and is not 100% tested.

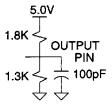


A.C. Read Characteristics

		AT28	C17-15	AT28	C17-20	AT28	C17-25	
Symbol	Parameter	Min	Max	Min	Мах	Min	Max	Units
tacc	Address to Output Delay		150		200		250	ns
tce (1)	CE to Output Delay		150		200		250	ns
toe (2)	OE to Output Delay	10	70	10	80	10	100	ns
t _{DF} (3,4)	CE or OE High to Output Float	0	50	0	55	0	60	ns
tон	Output Hold from OE, CE or Address, whichever occurred first	0		0		0		ns

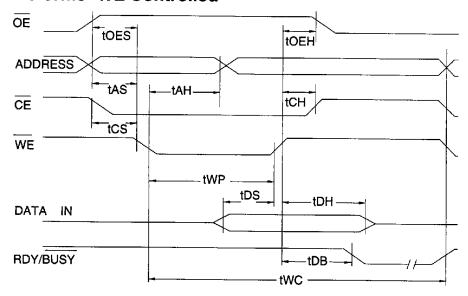

A.C. Read Waveforms (1,2,3,4)

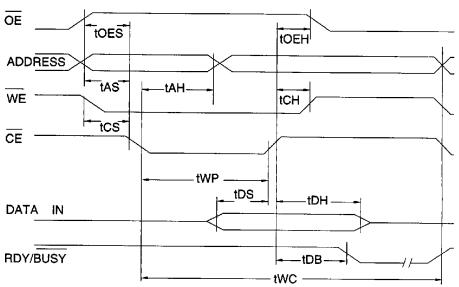
Notes:


- 1. \overline{CE} may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC} .
- 2. OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC}.
- 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first $(C_L = 5 \text{ pF})$.
- 4. This parameter is characterized and is not 100% tested.

Input Test Waveforms and Measurement Level

 $t_R, t_F < 20 \text{ ns}$

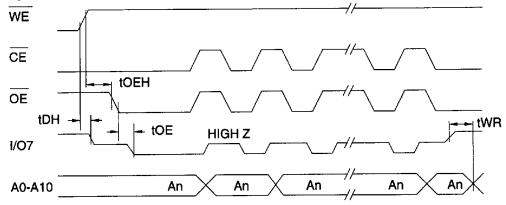

Output Test Load


A.C. Write Characteristics

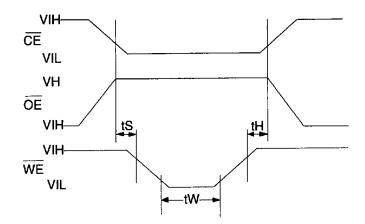
Symbol	Parameter		Min	Тур	Max	Units
tas, toes	Address, OE Set-up Time		10			ns
tah	Address Hold Time		50		***************************************	ns
twp	Write Pulse Width (WE or CE)	100		1000	ns
tos	Data Set-up Time		50	*		ns
ton,toen	Data, OE Hold Time		10			ns
tcs,tcH	CE to WE and WE to CE Set	-up and Hold Time	0	· · · · · · · · · · · · · · · · · · ·		ns
toB	Time to Device Busy				50	ns
twc	Write Cycle Time	AT28C17		0.5	1.0	ms
	write Cycle Title	AT28C17E		100	200	μs

A.C. Write Waveforms- WE Controlled

A.C. Write Waveforms- **CE** Controlled

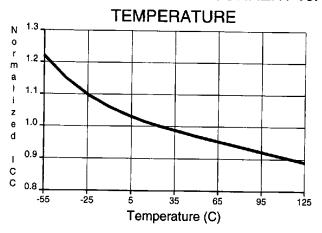

Data Polling Characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay ⁽²⁾				ns
twn	Write Recovery Time	0			ns

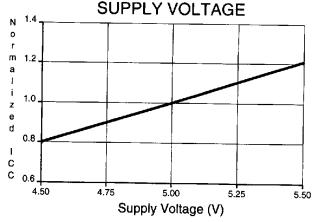

Notes: 1. These parameters are characterized and not 100% tested.

2. See A.C. Read Characteristics.

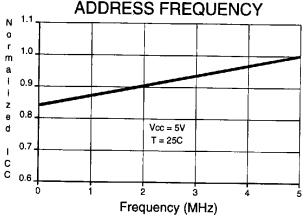
Data Polling Waveforms

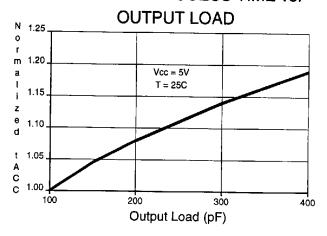


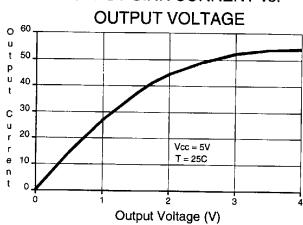
Chip Erase Waveforms

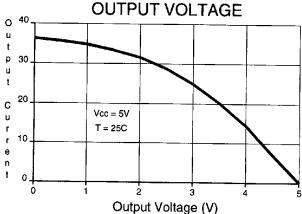


 $t_S = t_H = 1 \mu sec (min.)$ $t_W = 10 msec (min.)$ $V_H = 12.0 V \pm 0.5 V$


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED SUPPLY CURRENT vs.


NORMALIZED ACCESS TIME vs.

OUTPUT SINK CURRENT vs.

OUTPUT SOURCE CURRENT vs.

Ordering Information⁽¹⁾

tacc	lcc	(mA)	Ordering Code	Package	Operation Range
(ns) 	Active	Standby			•
150	30	0.1	AT28C17(E)-15DC AT28C17(E)-15JC AT28C17(E)-15PC AT28C17(E)-15SC	28D6 32J 28P6 28S	Commercial (0°C to 70°C)
150	45	0.1	AT28C17(E)-15DI AT28C17(E)-15JI AT28C17(E)-15PI AT28C17(E)-15SI	28D6 32J 28P6 28S	Industrial (-40°C to 85°C)
			AT28C17(E)-15DM/883	28D6	Military/883C Class B, Fully Compliant (-55°C to 125°C)
200	30	0.1	AT28C17(E)-20DC AT28C17(E)-20JC AT28C17(E)-20PC AT28C17(E)-20SC	28D6 32J 28P6 28S	Commercial (0°C to 70°C)
200	45	0.1	AT28C17(E)-20DI AT28C17(E)-20JI AT28C17(E)-20PI AT28C17(E)-20SI	28D6 32J 28P6 28S	Industrial (-40°C to 85°C)
			AT28C17(E)-20DM/883	28D6	Military/883C Class B, Fully Compliant (-55°C to 125°C)
250	30	0.1	AT28C17(E)-25DC AT28C17(E)-25JC AT28C17(E)-25PC AT28C17(E)-25SC AT28C17-W	28D6 32J 28P6 28S DIE	Commercial (0°C to 70°C)
250	45	0.1	AT28C17(E)-25DI AT28C17(E)-25JI AT28C17(E)-25PI AT28C17(E)-25SI	28D6 32J 28P6 28S	Industrial (-40°C to 85°C)
			AT28C17(E)-25DM/883	28D6	Military/883C Class B, Fully Compliant (-55°C to 125°C)

Note: 1. See Valid Part Number table below.

Valid Part Numbers

The following table lists standard Atmel products that can be ordered.

Device Numbers	Speed	Package and Temperature Combinations
AT28C17	15	DC, JC, JI, PC, PI, SC, SI, DM/883
AT28C17E	15	DC, JC, JI, PC, PI, SC, SI, DM/883
AT28C17	20	DC, JC, JI, PC, PI, SC, SI, DM/883
AT28C17E	20	DC, JC, JI, PC, PI, SC, SI, DM/883
AT28C17	25	DC, JC, JI, PC, PI, SC, SI, DM/883
AT28C17E	25	DC, JC, JI, PC, PI, SC, SI, DM/883

	Package Type	
28D6	28 Lead, 0.600" Wide, Non-Windowed, Ceramic Dual Inline Package (Cerdip)	
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)	
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)	
285	28 Lead, 0.300" Wide, Plastic Gull Wing, Small Outline (SOIC)	
W	Die	
	Options	
Blank	Standard Device: Endurance = 10K Write Cycles; Write Time = 1 ms	
E	High Endurance Option: Endurance = 100K Write Cycles; Write Time = 200 μs	

