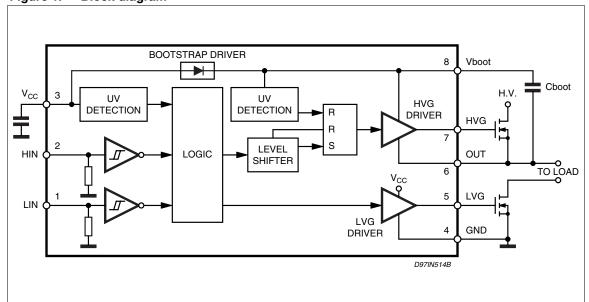


High-voltage high and low side driver

Features


- High voltage rail up to 600V
- dV/dt immunity ±50V/nsec in full temperature range
- Driver current capability:
 - 400mA source,
 - 650mA sink
- Switching times 50/30 nsec rise/fall with 1nF load
- CMOS/TTL Schmitt trigger inputs with hysteresis and pull down
- Under voltage lock out on lower and upper driving section
- Internal bootstrap diode
- Outputs in phase with inputs

Description

The L6385E is an high-voltage device, manufactured with the BCD"OFF-LINE" technology. It has an Half - Bridge Driver structure that enables to drive independent referenced N Channel Power MOS or IGBT. The High Side (Floating) Section is enabled to work with voltage Rail up to 600V. The Logic Inputs are CMOS/TTL compatible for ease of interfacing with controlling devices.

Figure 1. Block diagram

October 2007 Rev 1 1/16

www.st.com

Contents L6385E

Contents

1	Elec	trical data
	1.1	Absolute maximum ratings
	1.2	Thermal data 3
	1.3	Recommended operating conditions
2	Pin (connection
3	Elec	trical characteristics 5
	3.1	AC operation 5
	3.2	DC operation 5
	3.3	Timing diagram
4	Boo	tstrap driver
	4.1	CBOOT selection and charging 7
5	Турі	cal characteristic
6	Pack	kage mechanical data
7	Orde	er codes15
8	Revi	sion history

L6385E Electrical data

1 Electrical data

1.1 Absolute maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{out}	Output voltage	-3 to V _{boot} -18	V
V _{cc}	Supply voltage	- 0.3 to +18	V
V _{boot}	Floating supply voltage	-1 to 618	V
V _{hvg}	High sidegate output voltage	-1 to V _{boot}	V
V _{lvg}	Low side gate output voltage	-0.3 to V _{cc} +0.3	V
V _i	Logic input voltage	-0.3 to V _{cc} +0.3	V
dV _{out} /d _t	Allowed output slew rate	50	V/ns
P _{tot}	Total power dissipation (T _J = 85 °C)	750	mW
T _j	Junction temperature	150	°C
T _s	Storage temperature	-50 to 150	°C

Note: ESD immunity for pins 6, 7 and 8 is guaranteed up to 900 V (Human Body Model)

1.2 Thermal data

Table 2. Thermal data

Symbol	Parameter	SO-8	DIP-8	Unit
R _{th(JA)}	Thermal Resistance Junction to ambient	150	100	°C/W

1.3 Recommended operating conditions

Table 3. Recommended operating conditions

Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
V _{out}	6	Output voltage		(1)		580	V
V _{BS} (2)	8	Floating supply voltage		(1)		17	٧
f _{sw}		Switching frequency	HVG,LVG load C _L = 1nF			400	kHz
V _{cc}	3	Supply voltage				17	٧
T _J		Junction temperature		-45		125	°C

^{1.} If the condition Vboot - Vout < 18V is guaranteed, Vout can range from -3 to <math>580V

^{2.} $V_{BS} = V_{boot} - V_{out}$

Pin connection L6385E

2 Pin connection

Figure 2. Pin connection (Top view)

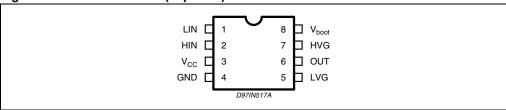


Table 4. Pin description

N°	Pin	Туре	Function
1	LIN	ı	Low side driver logic input
2	HIN	I	High side driver logic input
3	V _{cc}		Low voltage power supply
4	GND		Ground
5	LVG (1)	0	Low side driver output
6	VOUT	0	High side driver floating reference
7	HVG (1)	0	High side driver output
8	V _{boot}		Bootstrap supply voltage

The circuit guarantees 0.3V maximum on the pin (@ Isink = 10mA). This allows to omit the "bleeder" resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low.

3 Electrical characteristics

3.1 AC operation

Table 5. AC operation electrical characteristcs $(V_{CC} = 15V; T_J = 25^{\circ}C)$

Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
t _{on}		High/low side driver turn-on propagation delay	V _{out} = 0V		110		ns
t _{off}	1 vs 5 2 vs 7	High/low side driver turn-off propagation delay	V _{out} = 0V		105		ns
t _r	5, 7	Rise time	C _L = 1000pF		50		ns
t _f	5, 7	Fall time	C _L = 1000pF		30		ns

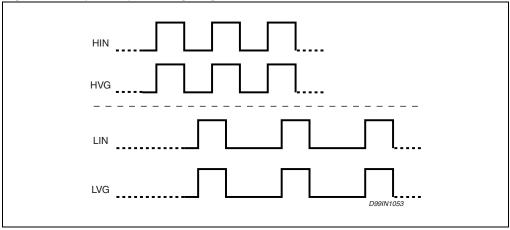
3.2 DC operation

Table 6. DC operation electrical characteristcs $(V_{CC} = 15V; T_J = 25^{\circ}C)$

Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit			
Low sup	Low supply voltage section									
V _{cc}		Supply voltage				17	V			
V _{ccth1}		Vcc UV turn on threshold		9.1	9.6	10.1	V			
V _{ccth2}		Vcc UV turn off threshold		7.9	8.3	8.8	V			
V _{cchys}		Vcc UV hysteresis			1.3		V			
I _{qccu}	3	Undervoltage quiescent supply current	V _{cc} ≤ 9V		150	220	μА			
I _{qcc}		Quiescent current	V _{in} = 15V		250	320	μΑ			
R _{dson}		Bootstrap driver on resistance ⁽¹⁾	V _{cc} ≥12.5V		125		Ω			
Bootstra	pped	supply voltage section								
V _{BS}		Bootstrap supply voltage				17	V			
V _{BSth1}		V _{BS} UV turn on threshold		8.5	9.5	10.5	V			
V _{BSth2}		V _{BS} UV turn off threshold		7.2	8.2	9.2	٧			
V _{BShys}	8	V _{BS} UV hysteresis			1.3		٧			
I _{QBS}		V _{BS} quiescent current	HVG ON			200	μΑ			
I _{LK}		High voltage leakage current	$V_{hvg} = V_{out} = V_{boot} = 600V$			10	μА			
High/low	side	driver								
I _{so}	5,7	Source short circuit current	$V_{IN} = V_{ih} (t_p < 10 \mu s)$	300	400		mA			
I _{si}	5,7	Sink short circuit current	$V_{IN} = V_{il} (tp < 10 \mu s)$	450	650		mA			

Electrical characteristics L6385E

iubic o.	be operation electrical characteristics (continued)(v ₀ C = 10v, 1j = 20 c)						
Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
Logic inp	outs						
V _{il}	1, 2	Low level logic threshold voltage				1.5	٧
V _{ih}	1, 2	High level logic threshold voltage		3.6			٧
l _{ih}	1, 2	High level logic input current	V _{IN} = 15V		50	70	μА
l _{il}	1, 2	Low level logic input current	$V_{IN} = 0V$			1	μΑ


Table 6. DC operation electrical characteristcs (continued)($V_{CC} = 15V$; $T_J = 25$ °C)

$$\mathsf{R}_{\mathsf{DSON}} = \frac{(\mathsf{V}_{\mathsf{CC}} - \mathsf{V}_{\mathsf{CBOOT1}}) - (\mathsf{V}_{\mathsf{CC}} - \mathsf{V}_{\mathsf{CBOOT2}})}{\mathsf{I}_{\mathsf{1}}(\mathsf{V}_{\mathsf{CC}}, \mathsf{V}_{\mathsf{CBOOT1}}) - \mathsf{I}_{\mathsf{2}}(\mathsf{V}_{\mathsf{CC}}, \mathsf{V}_{\mathsf{CBOOT2}})}$$

where I_1 is pin 8 current when $V_{CBOOT} = V_{CBOOT1}$, I_2 when $V_{CBOOT} = V_{CBOOT2}$

3.3 Timing diagram

Figure 3. Input/output timing diagram

^{1.} $R_{DS(on)}$ is tested in the following way:

L6385E Bootstrap driver

4 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (*Figure 4* a). In the L6385E a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low side driver (LVG), with in series a diode, as shown in *Figure 4* b. An internal charge pump (*Figure 4* b) provides the DMOS driving voltage. The diode connected in series to the DMOS has been added to avoid undesirable turn on of it.

4.1 C_{BOOT} selection and charging

To choose the proper C_{BOOT} value the external MOS can be seen as an equivalent capacitor. This capacitor C_{EXT} is related to the MOS total gate charge:

$$C_{EXT} = \frac{Q_{gate}}{V_{gate}}$$

The ratio between the capacitors C_{EXT} and C_{BOOT} is proportional to the cyclical voltage loss. It has to be:

$$C_{BOOT}>>>C_{EXT}$$

e.g.: if Q_{gate} is 30nC and V_{gate} is 10V, C_{EXT} is 3nF. With C_{BOOT} = 100nF the drop would be 300mV.

If HVG has to be supplied for a long time, the $C_{\mbox{\footnotesize{BOOT}}}$ selection has to take into account also the leakage losses.

e.g.: HVG steady state consumption is lower than $200\mu A$, so if HVG T_{ON} is 5ms, C_{BOOT} has to supply $1\mu C$ to C_{EXT} . This charge on a $1\mu F$ capacitor means a voltage drop of 1V.

The internal bootstrap driver gives great advantages: the external fast recovery diode can be avoided (it usually has great leakage current).

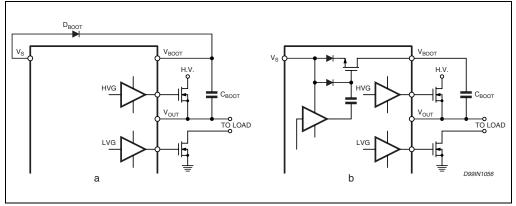
This structure can work only if V_{OUT} is close to GND (or lower) and in the meanwhile the LVG is on. The charging time (T_{charge}) of the C_{BOOT} is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor.

The bootstrap driver introduces a voltage drop due to the DMOS R_{DSON} (typical value: 125 Ω). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken in to account.

The following equation is useful to compute the drop on the bootstrap DMOS:

$$V_{drop} = I_{charge}R_{dson} \rightarrow V_{drop} = \frac{Q_{gate}}{T_{charge}}R_{dson}$$

where Q_{gate} is the gate charge of the external power MOS, R_{dson} is the on resistance of the bootstrap DMOS, and T_{charge} is the charging time of the bootstrap capacitor.


Bootstrap driver L6385E

For example: using a power MOS with a total gate charge of 30nC the drop on the bootstrap DMOS is about 1V, if the T_{charge} is $5\mu s$. In fact:

$$V_{drop} = \frac{30nC}{5\mu s} \cdot 125\Omega \sim 0.8V$$

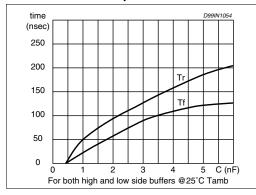

 V_{drop} has to be taken into account when the voltage drop on C_{BOOT} is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.

Figure 4. Bootstrap driver

5 Typical characteristic

Figure 5. Typical rise and fall times vs Figure 6. Quiescent current vs supply load capacitance voltage

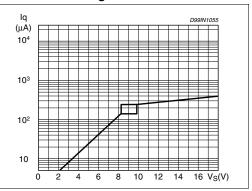
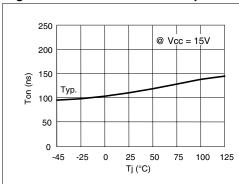



Figure 7. Turn on time vs temperature Figure 8. Turn Off time vs temperature

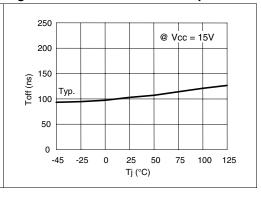
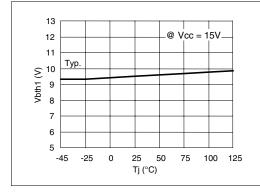
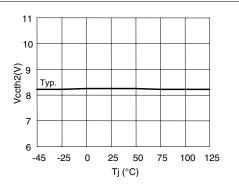




Figure 9. VBOOT UV turn On threshold Figure 10. Vcc UV turn Off threshold vs vs temperature temperature

Typical characteristic L6385E

Figure 11. V_{BOOT} UV turn Off threshold Figure 12. Output source current vs vs temperature temperature

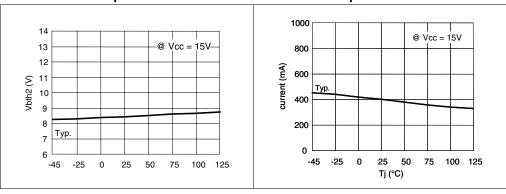
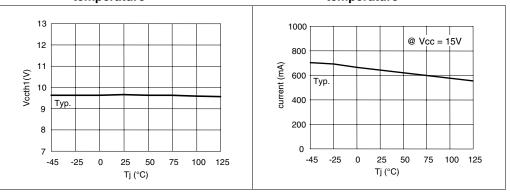



Figure 13. Vcc UV turn On threshold vs Figure 14. Output sink current vs temperature temperature

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Figure 15. DIP-8 mechanical data and package dimensions

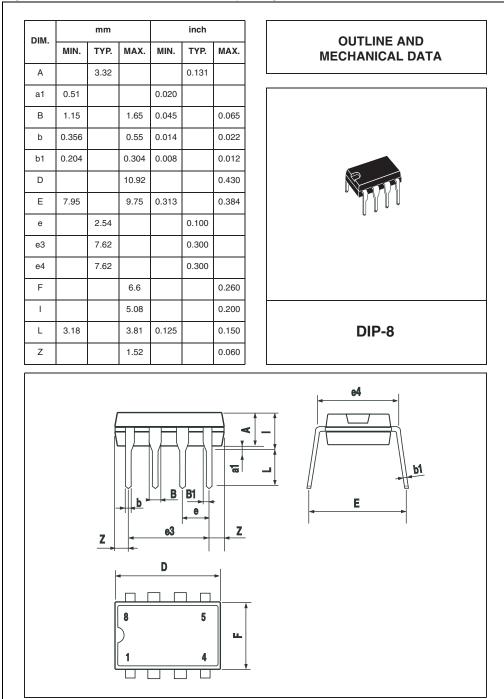
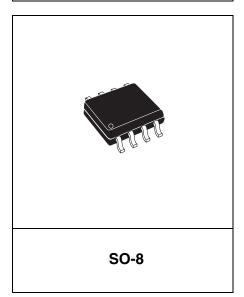
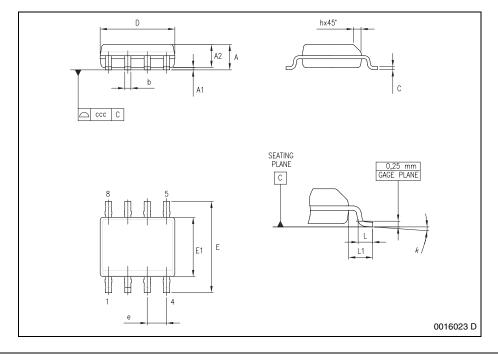




Figure 16. SO-8 mechanical data and package dimensions

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.750			0.0689
A1	0.100		0.250	0.0039		0.0098
A2	1.250			0.0492		
b	0.280		0.480	0.0110		0.0189
С	0.170		0.230	0.0067		0.0091
D ⁽¹⁾	4.800	4.900	5.000	0.1890	0.1929	0.1969
Е	5.800	6.000	6.200	0.2283	0.2362	0.2441
E1 ⁽²⁾	3.800	3.900	4.000	0.1496	0.1535	0.1575
е		1.270			0.0500	
h	0.250		0.500	0.0098		0.0197
L	0.400		1.270	0.0157		0.0500
L1		1.040			0.0409	
k	0°		8°	0°		8°
ccc			0.100			0.0039

OUTLINE AND MECHANICAL DATA

protrusions or gate burrs.
Mold flash, potrusions or gate burrs shall not
exceed 0.15mm in total (both side).

Dimension "E1" does not include interlead flash
or protrusions. Interlead flash or protrusions shall
not exceed 0.25mm per side.

Order codes L6385E

7 Order codes

Table 7. Order codes

Part number	Package	Packaging
L6385E	DIP-8	Tube
L6385ED	SO-8	Tube
L6385ED013TR	SO-8	Tape and reel

L6385E Revision history

8 Revision history

Table 8. Document revision history

Date	Revision	Changes
11-Oct-2007	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

477