White LED Step-Up Converter in SOT23

Abstract

General Description The MAX1848 drives white LEDs with a constant current to provide backlight in cell phones, PDAs, and other hand-held devices. The step-up converter topology allows series connection of the white LEDs so that the LED currents are identical for uniform brightness. This configuration eliminates the need for ballast resistors and expensive factory calibration. Other benefits include greater simplicity, lower cost, higher efficiency, and greater reliability. This step-up PWM converter includes an internal, highvoltage, low RDSON N-channel MOSFET switch for high efficiency and maximum battery life. A single analog voltage Dual Mode ${ }^{\text {TM }}$ input provides a simple means of brightness adjustment and on/off control. Fast 1.2 MHz current-mode PWM control allows for small input and output capacitors and a small inductor while minimizing ripple on the input supply/battery. Programmable softstart eliminates inrush current during startup. The MAX1848 is available in space-saving 8-pin thin QFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) and 8 -pin SOT23 packages.

Cell Phones and Smart Phones
PDAs, Palmops, and Wireless Handhelds
e-Books and Subnotebooks
White LED Display Backlighting

Typical Application Circuit

Features

- Constant Current Regulation for Uniform Illumination
- High 87\% Efficiency
- Analog or Logic Control of LED Intensity
- 0.8W Output Power with Internal High-Voltage MOSFET Switch
- Small, Low-Profile External Components
- 2.6V to 5.5V Input Range
- 13V Maximum Output with Overvoltage Protection
- Optimized for Low Input Ripple
- Programmable Soft-Start
- $0.3 \mu \mathrm{~A}$ Shutdown Current
- Small 8-pin Thin QFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) and 8-Pin SOT23 Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX1848EKA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SOT23	AAIM
MAX1848ETA-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Thin QFN $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$	ACR
MAX1848ETA +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Thin QFN $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$	ACR

+ Denotes lead-free package.
Note: Hand soldering is not recommended for the MAX1848 SOT23 package.

Pin Configuration

Dual Mode is a trademark of Maxim Integrated Products, Inc.

White LED Step-Up Converter in SOT23

ABSOLUTE MAXIMUM RATINGS

V+ to GND	-0.3V to +6V
PGND to GND-0.3V to +0.3V
LX, OUT to GND	.-0.3V to +14V
LX to OUT	-14V to +0.3V
CTRL to GND	.-0.3V to +6V or (V++2V)
COMP, CS to GND-0.3V to (V++0.3V)
LX Current0.45ARMS

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=11 \mathrm{~V}, \mathrm{~L}=33 \mu \mathrm{H}, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{C}\right.$ COMP $=0.15 \mu \mathrm{~F}, \mathrm{R}_{\text {SENSE }}=5 \Omega, \mathrm{~V}_{\mathrm{CTRL}}=1 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

White LED Step-Up Converter in SOT23

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=11 \mathrm{~V}, \mathrm{~L}=33 \mu \mathrm{H}, \mathrm{COUT}=1 \mu \mathrm{~F}, \mathrm{C}\right.$ COMP $=0.15 \mu \mathrm{~F}, \mathrm{RSENSE}=5 \Omega, \mathrm{~V}_{\mathrm{C}}$ TRL $=1 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
N-CHANNEL SWITCH						
LX On-Resistance	$\mathrm{LLX}=100 \mathrm{~mA}$			1.4	2.2	Ω
LX Leakage Current	VOUT $=$ VLX $=13 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	2	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		0.05		
LX Current Limit	Duty cycle $=65 \%$		300	500	750	mA

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=11 \mathrm{~V}, \mathrm{~L}=33 \mu \mathrm{H}, \mathrm{COUT}=1 \mu \mathrm{~F}, \mathrm{C}\right.$ COMP $=0.15 \mu \mathrm{~F}, \mathrm{R}_{\text {SENSE }}=5 \Omega, \mathrm{~V}_{\mathrm{CTRL}}=1 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. (Note 1)

Note 1: Limits are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed through correlation using statistical quality control (SQC) methods.

White LED Step-Up Converter in SOT23

(See Typical Application Circuit, V+ $=3 \mathrm{~V}$, ILED $=15 \mathrm{~mA}, \mathrm{~L}=33 \mu \mathrm{H}$, COUT $=1 \mu \mathrm{~F}, \mathrm{C}$ COMP $=0.15 \mu \mathrm{~F}$, RSENSE $=5 \Omega$, CTRL $=1 \mathrm{~V}, 2$ LEDs, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

50ms/div

EFFICIENCY vs. LOAD CURRENT

POWER-UP WAVEFORMS

50ms/div

20us/div

Vctrl transient response

White LED Step-Up Converter in SOT23

Typical Operating Characteristics (continued)
(See Typical Application Circuit, V $+=3 \mathrm{~V}$, ILED $=15 \mathrm{~mA}, \mathrm{~L}=33 \mu \mathrm{H}$, COUT $=1 \mu \mathrm{~F}, \mathrm{C} C O M P=0.15 \mu \mathrm{~F}, \mathrm{RSENSE}=5 \Omega$, CTRL $=1 \mathrm{~V}, 2 \mathrm{LEDs}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	COMP	Compensation Pin for Error Amplifier. Connect capacitor from COMP to GND. Startup time is set by the capacitance connected to this pin (0.833 ms for each $0.01 \mu \mathrm{~F}$). VCOMP passively discharges to GND when in shutdown.
2	CTRL	Brightness/Shutdown Dual Mode Control Input. LED brightness and IC shutdown are controlled by the voltage on CTRL. Voltages between 250 mV and 5.5 V or $(\mathrm{V}++2 \mathrm{~V})$, whichever is less, adjust the brightness from dim to bright, respectively. To put the IC into shutdown, drive below 100 mV or connect to GND.
3	OUT	Overvoltage Sense. When Vout is greater than 13.25V, the internal N-channel MOSFET is turned off and VCOMP decays to GND. When Vout drops below 12.25 V , the IC will re-enter soft-start. Connect a $1 \mu \mathrm{~F}$ capacitor from OUT to GND.
4	LX	Inductor Connection. Drain of the internal high-voltage N-channel MOSFET.
5	PGND	Power Ground. Source of the internal high-voltage N-channel MOSFET.
6	GND	Ground
7	CS	Current-Sense Feedback Input. Connect a resistor from this pin to GND to set the LED bias current. This pin regulates to 7.5% of $\mathrm{V}_{\text {CTRL }}$.
8	V+	Supply Voltage Input. The IC is powered from this pin. Input range is 2.6 V to 5.5 V . Bypass with a ceramic capacitor to GND.

White LED Step-Up Converter in SOT23

Abstract

The MAX1848's high efficiency and small size make it ideally suited to drive series-connected LEDs. It operates as a boost DC-DC converter that controls output current rather than voltage. The MAX1848 provides even illumination by sending the same output current through each LED, eliminating the need for expensive factory calibration. The fast 1.2 MHz internal oscillator allows for a small inductor and small input and output capacitors while minimizing input and output ripple. The single analog control input allows easy adjustment of LED brightness and on/off control. This allows either simple logic-level on/off control or a DAC to control both brightness and on/off. In shutdown, supply current is reduced to a low $0.3 \mu \mathrm{~A}$. A programmable soft-start gradually illuminates the LEDs, reducing the inrush current during startup.

Soft-Start

The MAX1848 attains soft-start by charging CCOMP gradually with a constant $12 \mu \mathrm{~A}$ current. When Vcomp rises above 1.25 V , the internal MOSFET begins switching, but at a reduced duty cycle. When VCOMP rises above 2.25 V , the duty cycle will be at its maximum.
The maximum startup time is determined by the value of CCOMP. For every $0.01 \mu \mathrm{~F}$ connected to COMP, the

Figure 1. Functional Diagram
startup time will increase by 0.833 ms . The start time can be calculated by:

$$
\mathrm{t}_{\text {SOFT-START }}(\mathrm{MAX})=\mathrm{C}_{\mathrm{COMP}} \times \frac{1 \mathrm{~V}}{12 \mu \mathrm{~A}}
$$

Shutdown

The MAX1848 is put into shutdown when VCTRL is less than 100 mV . In shutdown, supply current is reduced to $0.3 \mu \mathrm{~A}$ by powering down the entire IC except for the CTRL voltage detection circuitry. CCOMP is passively discharged during shutdown, allowing the device to reinitiate a soft-start whenever the device is enabled.
When in shutdown, the internal N -channel FET does not switch, which leaves a current path between the input and the LEDs through the boost inductor and Schottky diode. The minimum forward voltage of the LED array must exceed the maximum $V+$ to ensure that the LEDs remain off in shutdown. Typical shutdown timing characteristics are shown in the Typical Operating Characteristics.

Overvoltage Protection
Overvoltage protection occurs when VOUT is above 13.25 V . The protection circuitry stops the internal MOSFET from switching and causes $\mathrm{V}_{\text {COMP }}$ to decay to GND. The device comes out of overvoltage lockout and into soft-start when VOUT falls below 12.25 V .

Design Procedure

Adjusting LED Current

Adjusting the MAX1848's output current will change the brightness of the LEDs. An analog input (CTRL) and the sense resistor value set the output current. Output current is given by:

$$
\mathrm{L}_{\mathrm{LED}}=\frac{\mathrm{V}_{\mathrm{CTRL}}}{13.33 \times \mathrm{R}_{\text {SENSE }}}
$$

The VCTRL voltage range for adjusting output current is 250 mV to $(\mathrm{V}++2 \mathrm{~V})$ or 5.5 V , whichever is less. To set the maximum current, calculate RSENSE when $V_{\text {CTRL }}$ is at its maximum. Power dissipation in RSENSE is typically less than 5 mW ; therefore, a standard chip resistor is sufficient.

Capacitor Selection

The exact values of input and output capacitors are not critical. The typical value for the input capacitor is $3.3 \mu \mathrm{~F}$, and the typical value for the output capacitor is $1.0 \mu \mathrm{~F}$. Larger value capacitors can be used to reduce input and output ripple, but at the expense of size and higher cost.

White LED Step-Up Converter in SOT23

The output current and the number of LEDs in each leg affect the capacitance of CCOMP. Table 1 shows the minimum CCOMP values needed to stabilize the converter in worst-case conditions. If further stability analysis is required, note that the error amplifier has $50 \mu \mathrm{~A} / \mathrm{V}$ transconductance.

Inductor Selection

The value of the inductor depends on the maximum output current to the LEDs. See Table 1 for inductance values and peak current ratings for the inductor.

Schottky Diode Selection

The MAX1848's high-switching frequency demands a high-speed rectification diode. A Schottky diode is required due to their fast recovery time and low for-ward-voltage drop. Ensure that the diode's average and peak current rating exceed the average output current and peak inductor current, respectively. In addition, the diode's reverse breakdown voltage must exceed Vout.

$$
\operatorname{DIODE(RMS)} \cong \sqrt{\text { IOUT } \times \operatorname{PEAK}}
$$

Applications Information

Connecting Four or Six LEDs

The MAX1848 can drive one, two, or three legs of LEDs (Figure 2) as long as the total number of LEDs does not exceed six. Each leg must contain the same number of LEDs and the same sense-resistor value. Adding the second or third leg does not affect the sense-resistor value (see the Adjusting LED Current section).
Three legs of two LEDs is more efficient than two legs of three LEDs (see Efficiency Graphs in the Typical Operating Characteristics); however, a third sense resistor is needed. Multiple legs can have slight current mismatches due to component tolerances.

Table 1. Component Selection

ILED $(\mathbf{m A})$	NO. OF LEDs	Ccomp $(\boldsymbol{\mu F})$	INDUCTOR	
	3	0.220	56	IPEAK(mA)
	2	0.100		80
20	3	0.150	33	130
	2	0.068		
40	3	0.100	15	260
	2	0.047		375
60	3	0.068		
	2	0.01		

PC Board Layout
Due to fast-switching waveforms and high-current paths, careful PC board layout is required. Protoboards and wire-wrap boards should not be used for evaluation. An evaluation kit (MAX1848EV kit) is available to aid design.
When laying out a board, minimize trace lengths between the IC and RSENSE, the inductor, the diode, the input capacitor, and the output capacitor. Keep traces short, direct, and wide. Keep noisy traces, such as the inductor's traces, away from CS. V+'s bypass capacitor (CIN) should be placed as close to the IC as possible. PGND and GND should be connected in only one place as close to the IC as possible. The ground connections of CIN and COUT should be as close together as possible. The traces from V+ to the inductor and from the Schottky diode to the LEDs may be longer.
Refer to the MAX1848 EV kit for an example of proper layout.

Figure 2. Six LEDs in 3×2 Configuration

Chip Information

TRANSISTOR COUNT: 1290

White LED Step-Up Converter in SOT23

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

White LED Step-Up Converter in SOT23

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

