6-Channel LED Driver with Phase Shift Control and Frame Rate to Dimming Frequency Synchronization

ISL97674

The ISL97674 is a 6-Channel 45 V dual dimming capable LED driver that can be used with either SMBus $/ \mathrm{I}^{2} \mathrm{C}$ or PWM signal for dimming control. The ISL97674 drives 6 channels of LED to support 78 LEDs from 4.5 V to 26 V or 48 LEDs from a boost supply of 2.7 V to 26 V and a separate 5V bias on the ISL97674 VIN pin.

The ISL97674 compensates for non-uniformity of the forward voltage drops in the LED strings with its 6 voltage controlled-current source channels. Its headroom control monitors the highest LED forward voltage string for output regulation, to minimize the voltage headroom and power loss in a typical multi string operation.

The ISL97674 features optional channel phase shift control to minimize the input, output ripple characteristics and load transients as well as spreading the light output to help reduce the video and audio interference from the backlight driver operation. The phase shift can be programmed with equal phase angle or adjustable in 7-bit resolution. In addition, the ISL97674 also has a unique $\mathrm{V}_{\text {SYNC }}$ function that accepts $30 \mathrm{~Hz} \sim 120 \mathrm{~Hz}$ frame signal and synchronizes it to the dimming frequency to minimize panel to panel visual interference variation. The dimming frequencies are available from 200 Hz to 30 kHz and can be synchronized from 140 Hz to 1085 Hz .

Features

- 6 Channels
- Frame Rate to Dimming Frequency Synchronization
- 4.5V to 26.5 V Input
- 45V Output Max
- Up to 40 mA LED Current per channel
- Extensive Dimming Control
- PWM/DPST Dimming, I ${ }^{2}$ C 8-bit with equal phase shift, and 0.007\% Direct PWM dimming at 200 Hz
- Optional Master Fault Protection
- PWM Dimming Linearity $0.4 \% \sim 100 \%<30 \mathrm{kHz}$
- $600 \mathrm{kHz} / 1.2 \mathrm{MHz}$ selectable switching frequency
- Dynamic Headroom Control
- Protections with Flag Indication
- String Open/Short Circuit, V Overvoltage and Over-Temperature Protections
- Optional Master Fault Protection
- Current Matching $\pm 0.7 \%$
- 20 Ld $4 m m x 3 m m$ QFN Package

Applications

- Notebook Displays WLED or RGB LED Backlighting
- LCD Monitor LED Backlighting
- Automotive Displays LED Backlighting

Typical Application Circuit

FIGURE 1. ISL97674 TYPICAL APPLICATION DIAGRAM

Block Diagram

FIGURE 2. ISL97674 BLOCK DIAGRAM

Ordering Information

PART NUMBER (Notes 1, 2, 3)	PART MARKING	PACKAGE (Pb-free)	PKG. DWG. \#
ISL97674IRZ	7674	20 Ld 4x3 QFN	L20.3×4

NOTES:

1. Add "-T" or "-TK" suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb -free plastic packaged products employ special Pb -free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL97674. For more information on MSL please see techbrief TB363.

Pin Configuration

Pin Descriptions ($\mathrm{I}=\mathrm{Input}, \mathrm{O}=$ Output, $\mathrm{S}=$ Supply)

PIN NAME	PIN NO.	TYPE	
FAULT	1	O	Fault disconnect switch
VIN	2	S	Input voltage for the device and LED power
EN/PWM	3	I	Dual Functions: Enable pin and PWM brightness control pin. The device needs 4ms for initial power-up Enable, then this pin can be applied with a PWM signal with off time no longer than 28ms.
VDC	4	S	De-couple capacitor for internally generated supply rail.
VSYNC	5	I	Frame Rate to Dimming Frequency Synchronization Input
SDA	6	I/O	SMBus/I ${ }^{2}$ C serial data input and output
SCL	7	I	SMBus/I ${ }^{2}$ C serial clock input
PLLC	8	I	RC Components Setting Pin for Internal Phase Lock Loop
AGND	9	S	Analog Ground for precision circuits
CH0	10	I	Input 0 to current source, FB, and monitoring
CH1	11	I	Input 1 to current source, FB, and monitoring
CH2	12	I	Input 2 to current source, FB, and monitoring
CH3	13	I	Input 3 to current source, FB, and monitoring
CH4	14	I	Input 4 to current source, FB, and monitoring
CH5	15	I	Input 5 to current source, FB, and monitoring
OVP	16	I	Overvoltage protection input
RSET	17	I	Resistor connection for setting LED current, (see Equation 1 for calculating the ILEDpeak)
COMP	18	O	Boost compensation pin
PGND	19	S	Power ground
LX	20	O	Input to boost switch

Table of Contents
Typical Application Circuit 1
Block Diagram 2
Pin Descriptions ($\mathbf{I}=$ Input, $\mathbf{O}=$ Output, S = Supply) 3
Absolute Maximum Ratings 5
Thermal Information 5
Operating Conditions 5
Electrical Specifications 5
Typical Performance Curves 8
Theory of Operation 10
PWM Boost Converter 10
Enable and PWM 10
Current Matching and Current Accuracy 10
Dynamic Headroom Control 11
Dimming Controls 11
Maximum DC Current Setting 11
DC Current Adjustment 11
PWM Control 11
Phase Shift Control 12
$\mathrm{V}_{\text {SYNC }}$ Frame Rate to Dimming Synchronization 13
Switching Frequency 13
5V Low Dropout Regulator 13
In-rush Control and Soft-Start 13
Fault Protection and Monitoring 13
Short Circuit Protection (SCP) 14
Open Circuit Protection (OCP) 14
Overvoltage Protection (OVP) 14
Undervoltage Lockout 14
Input Overcurrent Protection 14
Over-Temperature Protection (OTP) 14
Write Byte 17
Read Byte 17
Slave Device Address. 17
SMBus/I ${ }^{2} \mathrm{C}$ Register Definitions 17
PWM Brightness Control Register (0x00) 19
Device Control Register (0x01) 20
Fault/Status Register (0x02) 20
Si Revision Register (0x03) 20
DC Brightness Control Register (0x07) 22
Configuration Register (0x08) 22
Output Channel Select and Fault Readout Register (0x09) 22
Phase Shift Control Register (0x0A) 24
PLL Control Register (0x0B) 24
Components Selections 24
Input Capacitor 24
Inductor 25
Output Capacitors. 25
Channel Capacitor 25
Output Ripple 25
Schottky Diode. 26
Applications 26
High Current Applications 26
Multiple Drivers Operation 26
Revision History 27
Products 27
Package Outline Drawing 28

```
Absolute Maximum Ratings ( }\mp@subsup{\textrm{T}}{\textrm{A}}{}=+2\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ )
VIN, EN/PWM. . . . . . . . . . . . . . . . . . . . . . . . - - 0.3V to 28V
FAULT . . . . . . . . . . . . . . . . . . . VIN - 8.5V to VIN + 0.3V
VDC, COMP, RSET, OVP . . . . . . . . . . . . . . . . . -0.3V to 5.5V
SCL, SDA, VSYNC, PLLC . . . . . . . . . . . . . . . -0.3V to 5.5V
CHO - CH5, LX . . . . . . . . . . . . . . . . . . . . . . . . . . - - . . . . . . . . to to 45 +0.3V
CHO - CH5, LX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - - . . . . . . . to to 45V +0.3V
Above voltage ratings are all with respect to AGND pin
ESD Rating
    Human Body Model (Tested per JESD22-A114E) . . . . . 3kV
    Machine Model (Tested per JESD22-A115-A) . . . . . . . 300V
    Charged Device Model . . . . . . . . . . . . . . . . . . . . . . 1kV
```


Thermal Information

Operating Conditions

Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.
NOTES:
4. θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief TB379.
5. For θ_{JC}, the "case temp" location is the center of the exposed metal pad on the package underside.
6. $\mathrm{PSI}_{\mathrm{JT}}$ is the PSI junction-to-top thermal characterization parameter. If the package top temperature can be measured with this rating then the die junction temperature can be estimated more accurately than the θ_{JC} and θ_{JC} thermal resistance ratings.
7. Refer to JESD51-7 high effective thermal conductivity board layout for proper via and plane designs.

Electrical Specifications All specifications below are tested at $T_{A}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{EN} / \mathrm{PWM}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{SET}}=20.1 \mathrm{k} \Omega$ unless otherwise noted. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	DESCRIPTION	CONDITION	MIN (Note 8)	TYP	MAX (Note 8)	UNIT
GENERAL						
$\mathrm{V}_{\text {IN }}$ (Note 9)	Backlight Supply Voltage	≤ 13 LEDs per channel (3.2V/20mA type)	4.5		26.5	V
$\mathrm{I}_{\text {VIN_STBY }}$	$\mathrm{V}_{\text {IN }}$ Shutdown Current				10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\begin{aligned} & 4.5 \mathrm{~V}<\mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}, \\ & \mathrm{~F}_{\mathrm{SW}}=600 \mathrm{kHz} \end{aligned}$			45	V
		$\begin{aligned} & 8.55 \mathrm{~V}<\mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}, \\ & \mathrm{~F}_{\mathrm{SW}}=1.2 \mathrm{MHz} \end{aligned}$			45	V
		$4.5 \mathrm{~V}<\mathrm{V}_{\text {IN }} \leq 8.55 \mathrm{~V}, \mathrm{~F}_{\text {SW }}=1.2 \mathrm{MHz}$			$\mathrm{V}_{\text {IN }} / 0.19$	V
$\mathrm{V}_{\text {UVLO }}$	Undervoltage Lock-out Threshold		2.6		3.3	V
VUVLO_HYS	Undervoltage Lock-out Hysteresis			275		mV
REGULATOR						
$V_{D C}$	LDO Output Voltage	$\mathrm{V}_{\text {IN }}>6 \mathrm{~V}$	4.55	4.8	5	V
$\mathrm{I}_{\mathrm{VDC}}$ _STBY	Standby Current	EN/PWM $=0 \mathrm{~V}$			5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{VDC}}$	Active Current	EN/PWM $=5 \mathrm{~V}$		5		mA
$\mathrm{V}_{\text {LDO }}$	VDC LDO Droop Voltage	$\mathrm{V}_{\text {IN }}>5.5 \mathrm{~V}, 20 \mathrm{~mA}$		20	200	mV
ENLow	Guaranteed Range for EN Input Low Voltage				0.5	V
ENHi	Guaranteed Range for EN Input High Voltage		1.8			V
$\mathrm{t}_{\text {ENLow }}$	EN/PWM low time before shut-down			30.5		ms

Electrical Specifications
All specifications below are tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{EN} / \mathrm{PWM}=5 \mathrm{~V}, \mathrm{R}_{\text {SET }}=20.1 \mathrm{k} \Omega$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (Continued)

Electrical Specifications
All specifications below are tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{EN} / \mathrm{PWM}=5 \mathrm{~V}, \mathrm{R}_{\text {SET }}=20.1 \mathrm{k} \Omega$ unless otherwise noted. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (Continued)

PARAMETER	DESCRIPTION	CONDITION	MIN (Note 8)	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 8) } \end{gathered}$	UNIT
$\mathrm{V}_{\text {FAULT }}$	Fault Clamp Voltage with Respect to $V_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {IN }}-\mathrm{V}_{\text {FAULT }}$	6	7	8.3	V
LXStart_thres	Lx Start-up Threshold		1.3	1.4	1.5	V
IlxStartup	Lx Start-up Current		1	3.5	5	mA
PLL						
V_{IL}	Guaranteed Range for VSYNC Input Low Voltage				0.8	V
V_{IH}	Guaranteed Range for VSYNC Input High Voltage		1.5		VDD	V
$\mathrm{f}_{\text {VSYNC }}$	VSYNC Input Frequency Range	$\div 4=0$	40		150	Hz
		$\div 4=1$	10		40	Hz
$\mathrm{f}_{\text {PWM }}$	Generated PWM Frequency	$\begin{aligned} & \mathrm{F}_{\mathrm{VSYNC}}=60 \mathrm{~Hz}, \div 4=0, \\ & \text { DIVREG }=0 \times 10 \end{aligned}$		204		Hz
		$\begin{aligned} & \mathrm{F}_{\mathrm{V} \text { SYN }}=60 \mathrm{~Hz}, \div 4=0, \\ & \text { DIVREG }=0 \times 07 \mathrm{~F} \end{aligned}$		1536		Hz
SMBus/I $\mathbf{I}^{\mathbf{2}} \mathbf{C}$ INTERFACE						
VIL	Guaranteed Range for Data, Clock Input Low Voltage				0.8	V
VIH	Guaranteed Range for Data, Clock Input High Voltage		1.5		VDD	V
VOL	SMBus/I²C Output Data Line Logic Low Voltage	$\mathrm{I}_{\text {PULLUP }}=4 \mathrm{~mA}$			0.17	V
$\mathrm{I}_{\text {LEAK }}$	Input Leakage On SDA/SCL	Measured at 4.8V	-10		10	$\mu \mathrm{A}$
SMBus/I ${ }^{\mathbf{2} \mathbf{C}}$ TIMING SPECIFICATIONS (Note 10)						
tEN-SMBus/I ${ }^{2} \mathrm{C}$	Minimum Time Between EN high and SMBus/I ${ }^{2} \mathrm{C}$ Enabled	$1 \mu \mathrm{~F}$ capacitor on VDC	2			ms
PWS	Pulse Width Suppression on SDA/SCL		0.15		0.45	$\mu \mathrm{s}$
$\mathrm{f}_{\mathrm{SCL}}$	SCL Clock Frequency				400	kHz
t_{1}	Bus Free Time Between Stop and Start Condition		1.3			$\mu \mathrm{s}$
t_{2}	$\mathrm{t}_{\text {HD: }}$ STA Hold Time After (Repeated) START Condition	After this Period, the First Clock is Generated	0.6			$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU:STA }}$	Repeated Start Condition Setup Time	t5	0.6			$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU:STO }}$	Stop Condition Setup Time		0.6			$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD}: \text { DAT }}$	Data Hold Time		300			ns
$\mathrm{t}_{\text {SU:DAT }}$	Data Setup Time		100			ns
t_{3}	Low Period of SCL Clock		1.3			$\mu \mathrm{s}$
t_{4}	High Period of SCL Clock		0.6			$\mu \mathrm{s}$
t_{F}	Clock/data Fall Time				300	ns
t_{R}	Clock/data Rise Time				300	ns

NOTES:
8. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.
9. Independent from the numbers of LEDs, at minimum $\mathrm{V}_{\text {IN }}$ of 4.5 V , maximum $\mathrm{V}_{\text {OUT }}$ is limited to 35 V . And at maximum $\mathrm{V}_{\text {IN }}$ of 26.5 V , minimum $\mathrm{V}_{\text {OUT }}$ is limited 28 V .
10. Limits established by characterization and are not production tested.

Typical Performance Curves

FIGURE 3. EFFICIENCY vs up to 20mA LED CURRENT (100\% LED DUTY CYCLE) vs $V_{\text {IN }}$

FIGURE 5. EFFICIENCY vs $V_{\text {IN }}$ vs SWITCHING FREQUENCY AT 20mA (100\% LED DUTY CYCLE)

FIGURE 7. EFFICIENCY vs $V_{\text {IN }}$ vs TEMPERATURE AT 20mA (100\% LED DUTY CYCLE)

FIGURE 4. EFFICIENCY vs up to 30 mA LED CURRENT (100% LED DUTY CYCLE) vs $V_{\text {IN }}$

FIGURE 6. EFFICIENCY vs V IN vs SWITCHING FREQUENCY AT 30mA (100\% LED DUTY CYCLE)

FIGURE 8. CHANNEL-TO-CHANNEL CURRENT MATCHING

Typical Performance Curves (Continued)

FIGURE 9. CURRENT LINEARITY vs LOW LEVEL PWM DIMMING DUTY CYCLE vs $V_{\text {IN }}$

FIGURE 11. $\mathrm{V}_{\text {OUT }}$ RIPPLE VOLTAGE, $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, 6 \mathrm{P} 12 \mathrm{~S}$ AT 20mA/CHANNEL

FIGURE 13. IN-RUSH AND LED CURRENT AT $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$ FOR 6P12S AT $20 \mathrm{~mA} / \mathrm{CHANNEL}$

FIGURE 10. $V_{\text {HEADROOM }}$ vs $V_{\text {IN }}$ AT $\mathbf{2 0 m A}$

FIGURE 12. IN-RUSH and LED CURRENT AT $\mathrm{V}_{\text {IN }}=\mathbf{6 V}$ FOR 6P12S AT 20 mA /CHANNEL

FIGURE 14. LINE REGULATION WITH VIN CHANGE FROM 6V TO 26V, $V_{\text {IN }}=12 \mathrm{~V}, 6 \mathrm{P} 12 \mathrm{~S}$ AT 20mA/CHANNEL

Typical Performance Curves (Continued)

FIGURE 15. LINE REGULATION WITH $V_{\text {IN }}$ CHANGE FROM 26V TO 6V FOR 6P12S AT 20mA/CHANNEL

FIGURE 17. LOAD REGULATION WITH I Led CHANGE FROM 100\% TO 0\% PWM DIMMING, $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, 6P12S AT 20mA/CHANNEL

Theory of Operation

PWM Boost Converter

The current mode PWM boost converter produces the minimal voltage needed to enable the LED stack with the highest forward voltage drop to run at the programmed current. The ISL97674 employ current mode control boost architecture that has a fast current sense loop and a slow voltage feedback loop. Such architecture achieves a fast transient response that is essential for the notebook backlight application where the power can be a series of drained batteries or instantly change to an AC/DC adapter without rendering a noticeable visual nuisance. The number of LEDs that can be driven by ISL97674 depend on the type of LED chosen in the application. The ISL97674 are capable of boosting up to 45 V and typically driving 13 LEDs in series for each of the 6 channels, enabling a total of 78 pieces of the $3.2 \mathrm{~V} / 20 \mathrm{~mA}$ type of LEDs.

FIGURE 16. LOAD REGULATION WITH I IED CHANGE FROM 0\% TO 100\% PWM DIMMING, $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, 6P12S AT 20mA/CHANNEL

FIGURE 18. ISL97671 SHUTS DOWN AND STOPS SWITCHING ~ 30ms AFTER EN GOES LOW

Enable and PWM

The ISL97674 has EN/PWM pin that serves dual purposes; it is used as an Enable signal and can be used as a PWM input signal for dimming. If a PWM signal is applied to this pin, the first pulse of minimum 4 ms will be used as an Enable signal. If there is no signal for longer than 28 ms , the device will enter shutdown.

Current Matching and Current Accuracy

Each channel of the LED current is regulated by the current source circuit, as shown in Figure 19.

FIGURE 19. SIMPLIFIED CURRENT SOURCE CIRCUIT
The LED peak current is set by translating the $\mathrm{R}_{\mathrm{SET}}$ current to the output with a scaling factor of $401.8 / R_{\text {SET }}$. The source terminals of the current source MOSFETs are designed to run at 500 mV to optimize power loss versus accuracy requirements. The sources of errors of the channel-to-channel current matching come from the op amps offset, internal layout, reference, and current source resistors. These parameters are optimized for current matching and absolute current accuracy. However, the absolute accuracy is additionally determined by the external $\mathrm{R}_{\mathrm{SET}}$. A 1% tolerance resistor is recommended.

Dynamic Headroom Control

The ISL97674 features a proprietary Dynamic Headroom Control circuit that detects the highest forward voltage string or effectively the lowest voltage from any of the $\mathrm{CHO}-\mathrm{CH} 5$ pins digitally. When the lowest channel voltage is lower than the short circuit threshold, V_{SC}, such voltage will be used as the feedback signal for the boost regulator. The boost makes the output to the correct level such that the lowest channel is at the target headroom voltage. Since all LED stacks are connected to the same output voltage, the other channel pins will have a higher voltage, but the regulated current source circuit on each channel will ensure that each channel has the same current. The output voltage will regulate cycle-bycycle and it is always referenced to the highest forward voltage string in the architecture.

Dimming Controls

The ISL97674 allow two ways of controlling the LED current, and therefore, the brightness. They are:

1. DC current adjustment
2. PWM chopping of the LED current defined in Step 1.

There are various ways to achieve DC or PWM current control, which will be described in the following.
where BRT is the PWM brightness level programmed in the Register 0×00. BRT ranges from 0 to 255 in decimal

MAXIMUM DC CURRENT SETTING

The initial brightness should be set by choosing an appropriate value for $\mathrm{R}_{\text {SET }}$. This should be chosen to fix the maximum possible LED current:
$\mathrm{I}_{\text {LEDmax }}=\frac{(401.8)}{\mathrm{R}_{\mathrm{SET}}}$

DC CURRENT ADJUSTMENT

Once $R_{\text {SET }}$ is fixed, the LED DC current can be adjusted through Register 0x07 (BRTDC) as follows:
$\mathrm{I}_{\mathrm{LED}}=1.58 \mathrm{x}\left(\mathrm{BRTDC} / \mathrm{R}_{\mathrm{SET}}\right)$

BRTDC can be programmed from 0 to 255 in decimal and defaults to 255 (0xFF). If left at the default value, LED current will be fixed at $\mathrm{I}_{\text {LED }} m a x$. BRTDC can be adjusted dynamically on the fly during operation. BRTDC $=0$ disconnects all channels.
For example, if the maximum required LED current ($\mathrm{I}_{\text {LED }}$ (max)) is 20 mA , rearranging Equation 1 yields Equation 3:
$R_{S E T}=401.8 / 0.02=20.1 \mathrm{k} \Omega$
If BRTDC is set to 200 then:
$\mathrm{I}_{\text {LED }}=1.58 \cdot 200 / 20100=15.7 \mathrm{~mA}$

PWM Control

The ISL97674 provides two different PWM dimming methods, as described in the following. Each of these methods results in PWM chopping of the current in the LEDs for all 6 channels to provide an average LED current. During the On periods, the LED current will be defined by the value of $\mathrm{R}_{\text {SET }}$ and BRTDC, as described in Equations 1 and 2. The source of the PWM signal can be described as follows:

1. SMBus/ $\mathbf{I}^{\mathbf{2}} \mathbf{C}$ generated 256 level duty cycle programmed through the SMBus $/ \mathrm{I}^{2} \mathrm{C}$.
2. External signal from PWM.

The default PWM dimming is in SMBus/ $\mathrm{I}^{2} \mathrm{C}$ mode. In both methods, the average LED current of each channel is controlled by $\mathrm{I}_{\text {LED }}$ and the PWM duty cycle in percent as:
$\mathrm{I}_{\mathrm{LED}(\text { ave })}=\mathrm{I}_{\mathrm{LED}} \times \mathrm{PWM}$

Method 1 (SMBus/I $\mathbf{I}^{\mathbf{2}} \mathbf{C}$ controlled PWM)

To use this mode, users need to set Register0x01 to 0×05 with EN/PWM in logic high.

The average LED current of each channel is controlled by the SMBus $/ \mathrm{I}^{2} \mathrm{C}$ setting as
$\mathrm{I}_{\mathrm{LED}(\mathrm{ave})}=\mathrm{I}_{\mathrm{LED}} \times(\mathrm{BRT} / 255)$
and defaults to 255 (0xFF). BRT $=0$ disconnects all channels.

Method 2 (External applied PWM)

To use this mode users need to set Register 0x01 to 0x03
The average LED current of each channel can also be controlled by an external PWM signal as:

$$
\begin{equation*}
. \operatorname{ILED}(\text { ave })=\mathrm{I}_{\mathrm{LED}} \times \mathrm{PWM} \tag{EQ.7}
\end{equation*}
$$

PHASE SHIFT CONTROL

The ISL97674 is capable of delaying the phase of each current source to minimize load transients. By default, phase shifting is disabled as shown in Figure 20 where the channels PWM currents are switching uniformly. The duty cycles can be controlled by the data in PWM Brightness Control Register via the SMBus $/ \mathrm{I}^{2} \mathrm{C}$ interface, an external PWM signal with the frequency set by the PLL, or by an external PWM signal with the frequency set by the incoming signal.

FIGURE 20. NO DELAY (DEFAULT PHASE SHIFT DISABLED)

When EqualPhase $=1$, the phase shift evenly spreads the channels switching across the PWM cycle, depending on how many channels are enabled, as shown in Figures 22 and 23. Such fixed delay can be calculated as
$\mathrm{t}_{\mathrm{D} 1}=\frac{\mathrm{t}_{\text {FPWM }}}{255} \times\left(\frac{255}{\mathrm{~N}}\right)$
$\mathrm{t}_{\mathrm{D} 2}=\frac{\mathrm{t}_{\mathrm{FPWM}}}{255} \mathrm{x}\left(255-(\mathrm{N}-1)\left(\frac{255}{\mathrm{~N}}\right)\right)$
where $(255 / \mathrm{N})$ is rounded down to the nearest integer. For example, if $N=6,(255 / N)=42$, that leads to
$t_{D 1}=t_{\text {FPWM }} \times 42 / 255$
$t_{D 2}=t_{F P W M} \times 45 / 255$
where $\mathrm{t}_{\text {FPWM }}$ is the sum of $\mathrm{t}_{\text {ON }}$ and $\mathrm{t}_{\text {OFF }} \mathrm{N}$ is the number of LED channels. The ISL97674 will detect the numbers of operating channels automatically.

FIGURE 21. PHASE SHIFT WITH FIXED DELAY (6 CHANNELS)

FIGURE 22. PHASE SHIFT WITH FIXED DELAY (4 CHANNELS)

The ISL97674 allows the user to program the amount of phase shift degree in 7-bit resolution, as shown in Figure 24. To enable programmable phase shifting, the user must write to the Phase Shift Control register with EqualPhase $=0$ and the desirable phase shift value of PhaseShift[6:0]. The delay between CH 5 and the repeated CHO is the rest of the PWM cycle.

FIGURE 23. PHASE SHIFT WITH 7-BIT PROGRAMMABLE DELAY

$\mathbf{V}_{\text {SYNC }}$ Frame Rate to Dimming Synchronization

The ISL97674 features a $\mathrm{V}_{\text {SYNC }}$ function that allows the frame rate synchronized with the PWM dimming frequency that minimizes the potential interference generated by the mismatch between frame rate to PWM dimming frequency. To use this function, users need to configure the PLL filter network as shown in Figure 25 that sets the PLL loop stability. In addition the user must provide a PWM dimming signal into the PWMI pin and a video frame signal into the $\mathrm{V}_{\text {SYNC }}$ pin. The incoming PWM dimming duty cycle will be preserved but the frequency will change as described below.

FIGURE 24. PLL CONFIGURATION

The internal PLL locks the LED dimming PWM frequency to the incoming frame frequency. The video frame signal must be limited from 10 Hz to 150 Hz . If the video frame signal is greater than 40 Hz , then the PLLDIVBY4 bit should be set low, and the generated PWM frequency is:
$f_{\text {PWM }}=f_{V S Y N C} *($ PLLDIV +1$) / 5$. If the video frame signal is less than 40 Hz , then the PLLDIVBY4 bit should be set high, and the generated PWM frequency is: $\mathrm{f}_{\mathrm{PWM}}=4^{*}$ $\mathrm{f}_{\text {VSYNC }}$ * (PLLDIV + 1)/5. This allows LEDs to be dimmed at 200 Hz to 1 kHz for any frame signal within the 10 Hz to 150 Hz range.

Switching Frequency

There are 2 levels of switching frequencies enable for the boost regulator's control of the LX pin: 600 kHz or 1.2 MHz . Each can be programmed in the Configuration Register 0×08 bit 2. The default switching frequency is at 600 kHz .

5V Low Dropout Regulator

A 5V LDO regulator is present at the VDC pin to develop the necessary low voltage supply, which is used by the chips internal control circuitry. Because VDC is an LDO pin, it requires a bypass capacitor of $1 \mu \mathrm{~F}$ or more for the regulation. Low input voltage also limits higher output voltage applications due to the maximum boost ratio defined in "Components Selections" on page 24. The VDC pin can be used as a coarse reference with a few mA sourcing capability.

In-rush Control and Soft-Start

The ISL97674 has separately built in independent in-rush control and soft-start functions. The in-rush control
function is built around the short circuit protection FET, and is only available in applications, which include this device. At start-up, the fault protection FET is turned on slowly due to a $15 \mu \mathrm{~A}$ pull-down current output from the FAULT pin. This discharges the fault FET's gate-source capacitance, turning on the FET in a controlled fashion. As this happens, the output capacitor is charged slowly through the weakly turned on FET before it becomes fully enhanced. This results in a low in-rush current. This current can be further reduced by adding a capacitor (in the 1 nF to 5 nF range) across the gate-source terminals of the FET.
Once the chip detects that the fault protection FET is turned on hard, it is assumed that in-rush has completed. At this point, the boost regulator will begin to switch and the current in the inductor will ramp-up. The current in the boost power switch is monitored and the switching is terminated in any cycle where the current exceeds the current limit. The ISL97674 includes a softstart feature where this current limit starts at a low value (275 mA). This is stepped up to the final 2.2A current limit in 7 further steps of 275 mA . These steps will happen over at least 8 ms , and will be extended at low LED PWM frequencies if the LED duty cycle is low. This allows the output capacitor to be charged to the required value at a low current limit and prevents high input current for systems that have only a low to medium output current requirement.
For systems with no master fault protection FET, the in-rush current will flow towards Cout when VIN is applied and it is determined by the ramp rate of VIN and the values of Cout and L .

Fault Protection and Monitoring

The ISL97674 features extensive protection functions to cover all the perceivable failure conditions. The failure mode of a LED can be either open circuit or as a short. The behavior of an open circuited LED can additionally take the form of either infinite resistance or, for some LEDs, a zener diode, which is integrated into the device in parallel with the now opened LED.
For basic LEDs (which do not have built-in zener diodes), an open circuit failure of an LED will only result in the loss of one channel of LEDs without affecting other channels. Similarly, a short circuit condition on a channel that results in that channel being turned off does not affect other channels unless a similar fault is occurring. LED faults are reported via the SMBus $/ \mathrm{I}^{2} \mathrm{C}$ interface to Register 0×02 (Fault/Status register). The controller is able to determine which channels have failed via Register 0×09 (Output Masking register). The controller can also choose to use Register 0x09 to disable faulty channels at start-up, resulting in only further faulty channels being reported by Register 0x02.

Due to the lag in boost response to any load change at its output, certain transient events (such as LED current steps or significant step changes in LED duty cycle) can transiently look like LED fault modes. The ISL97674 uses feedback from the LEDs to determine when it is in a
stable operating region and prevents apparent faults during these transient events from allowing any of the LED stacks to fault out. See Table 1 for more details.
A fault condition that results in high input current due to a short on $\mathrm{V}_{\text {OUT }}$ will result in a shutdown of all output channels. The control device logic will remain functional such that the Fault/Status Register can be interrogated by the system. The root cause of the failure will be loaded to the volatile Fault/Status Register so that the host processor can interrogate the data for failure monitoring.

Short Circuit Protection (SCP)

The short circuit detection circuit monitors the voltage on each channel and disables faulty channels which are detected above the programmed short circuit threshold. There are three selectable levels of short circuit threshold ($3.6 \mathrm{~V}, 4.8 \mathrm{~V}$, and 5.85 V) that can be programmed through the Configuration Register 0x08. When an LED becomes shorted, the action taken is described in Table 1. The default short circuit threshold is 5.85 V . The detection of this failure mode can be disabled via Register 0x08.

Open Circuit Protection (OCP)

When one of the LEDs becomes open circuit, it can behave as either an infinite resistance or a gradually increasing finite resistance. The ISL97674 monitors the current in each channel such that any string which reaches the intended output current is considered "good". Should the current subsequently fall below the target, the channel will be considered an "open circuit". Furthermore, should the boost output of the ISL97674 reaches the OVP limit or should the lower over-temperature threshold be reached, all channels which are not "good" will immediately be considered as "open circuit". Detection of an "open circuit" channel will result in a time-out before disabling of the affected channel. This time-out is run when the device is above the lower over-temperature threshold in an attempt to prevent the upper over-temperature trip point from being reached.

Some users employ some special types of LEDs that have zener diode structure in parallel with the LED for ESD enhancement, thus enabling open circuit operation. When this type of LED goes open circuit, the effect is as if the LED forward voltage has increased, but no light is emitted. Any affected string will not be disabled, unless the failure results in the boost OVP limit being reached, allowing all other LEDs in the string to remain functional. Care should be taken in this case that the boost OVP limit and SCP limit are set properly, so as to make sure that multiple failures on one string do not cause all other good channels to be faulted out. This is due to the increased forward voltage of the faulty channel making all other channel look as if they have LED shorts. See Table 1 for details for responses to fault conditions.

Overvoltage Protection (OVP)

The integrated OVP circuit monitors the output voltage and keeps the voltage at a safe level. The OVP threshold is set as:

OVP $=1.21 \mathrm{~V} \times\left(R_{\text {UPPER }}+R_{\text {LOWER }}\right) / R_{\text {LOWER }}$
These resistors should be large to minimize the power loss. For example, a $1 \mathrm{Mk} \Omega \mathrm{R}_{\text {UPPER }}$ and $30 \mathrm{k} \Omega \mathrm{R}_{\text {LOWER }}$ sets OVP to 41.2V. Large OVP resistors also allow COUT discharges slowly during the PWM Off time. Parallel capacitors should also be placed across the OVP resistors such that $R_{\text {UPPER }} / R_{\text {LOWER }}=C_{\text {LOWER }} / C_{\text {UPPER }}$. Using a $C_{\text {UPPER }}$ value of at least 30 pF is recommended. These capacitors reduce the AC impedance of the OVP node, which is important when using high value resistors.

Undervoltage Lockout

If the input voltage falls below the UVLO level of 2.45 V , the device will stop switching and be reset. Operation will restart only if the device is re-enabled through SMBus $/ \mathrm{I}^{2} \mathrm{C}$ interface once the input voltage is back in the normal operating range.

Input Overcurrent Protection

During normal switching operation, the current through the internal boost power FET is monitored. If the current exceeds the current limit, the internal switch will be turned off. This monitoring happens on a cycle by cycle basis in a self protecting way.
Additionally, the ISL97674 monitors the voltage at the LX and OVP pins. At startup, a fixed current is injected out of the LX pins and into the output capacitor. The device will not start up unless the voltage at LX exceeds 1.2 V . The OVP pin is also monitored such that if it rises above and subsequently falls below 20% of the target OVP level, the input protection FET will be switched off.

Over-Temperature Protection (OTP)

The ISL97674 includes two over-temperature thresholds. The lower threshold is set to $+130^{\circ} \mathrm{C}$. When this threshold is reached, any channel which is outputting current at a level below the regulation target will be treated as "open circuit" and disabled after a time-out period. The intention of the lower threshold is to allow bad channels to be isolated and disabled before they cause enough power dissipation (as a result of other channels having large voltages across them) to hit the upper temperature threshold.
The upper threshold is set to $+150^{\circ} \mathrm{C}$. Each time this is reached, the boost will stop switching and the output current sources will be switched off. Hitting of the upper threshold will also set the thermal fault bit of the Fault/Status register 0x02. Unless disabled via the EN pin, the device stays in an active state throughout, allowing an external processor to interrogate the fault condition.

For the extensive fault protection conditions, please refer to Figure 25 and Table 1 for details.

FIGURE 25. SIMPLIFIED FAULT PROTECTIONS
TABLE 1. PROTECTIONS TABLE

| CASE | FAILURE MODE | DETECTION MODE | FAILED CHANNEL ACTION |
| :---: | :--- | :--- | :--- | :--- | :--- | GOOD CHANNELS ACTION | REGULATED BY |
| :--- |

TABLE 1. PROTECTIONS TABLE (Continued)

CASE	FAILURE MODE	DETECTION MODE	FAILED CHANNEL ACTION	GOOD CHANNELS ACTION	$V_{\text {OUT }}$ REGULATED BY
7	CHO LED Open Circuit but has paralleled Zener	Upper OTP not triggered but $\mathrm{CHx}>4 \mathrm{~V}$	CHO remains ON and has highest VF, thus $\mathrm{V}_{\text {OUT }}$ increases.	$\mathrm{V}_{\text {OUT }}$ increases, then $\mathrm{CH}-\mathrm{X}$ switches OFF after 6 PWM cycles. This is an unwanted shut off and can be prevented by setting OVP at an appropriate level.	VF of CHO
8	Channel-to- Channel $\Delta \mathrm{VF}$ too high	Lower OTP triggered but $\mathrm{CHx}<4 \mathrm{~V}$	Any channel at below the target current will fault out after 6 PWM cycles. Remaining channels driven with normal current.		Highest VF of CHO through CH5
9	Channel-toChannel $\Delta V F$ too high	Upper OTP triggered but CHx < 4V	All channels go off until chip cooled and then comes back on with current reduced to 76%. Subsequent OTP triggers will reduce $I_{\text {OUT }}$ further		Highest VF of CHO through CH5
10	Output LED stack voltage too high	$\mathrm{V}_{\text {OUT }}>$ VOVP	Any channel that is below the target current will time-out after 6 PWM cycles, and $\mathrm{V}_{\text {OUT }}$ will return to the normal regulation voltage required for other channels.		Highest VF of CHO through CH5
11	$V_{\text {OUT }} / L X$ shorted to GND at start-up or $\mathrm{V}_{\text {OUT }}$ shorted in operation	LX current and timing are monitored. OVP pins monitored for excursions below 20\% of OVP threshold.	The chip is permanently shutdown 31 mS after power-up if $\mathrm{V}_{\text {OUT }} / L \mathrm{Lx}$ is shorted to GND.		

NOTES:
SMBus/I ${ }^{\mathbf{2}} \mathbf{C}$ Description
$\mathbf{S}=$ start condition
$\mathbf{P}=$ stop condition
A = acknowledge
$\bar{A}=$ not acknowledge
$R / \bar{W}=$ read enable at high; write enable at low
FIGURE 26. SMBus/ $I^{2} C$ INTERFACE

1	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{8}$	1	1
\mathbf{S}	Slave Address	\bar{W}	A	Command Code	A	Data byte	A	P

Master to Slave

Slave to Master

FIGURE 27. WRITE BYTE PROTOCOL

1	7	1	1	8	1	1	8	1	1	8	1	1
S	Slave Address	$\overline{\mathbf{w}}$	A	Command Code	A	S	Slave Address	R	A	Data Byte	$\overline{\mathbf{A}}$	P

Master to Slave

Slave to Master
FIGURE 28. READ BYTE PROTOCOL

Write Byte

The Write Byte protocol is only three bytes long. The first byte starts with the slave address followed by the "command code," which translates to the "register index" being written. The third byte contains the data byte that must be written into the register selected by the "command code". A shaded label is used on cycles during which the slaved backlight controller "owns" or "drives" the Data line. All other cycles are driven by the "host master."

Read Byte

As shown in the Figure 28, the four byte long Read Byte protocol starts out with the slave address followed by the "command code" which translates to the "register index." Subsequently, the bus direction turns around with the re-broadcast of the slave address with bit 0 indicating a read ("R") cycle. The fourth byte contains the data being returned by the backlight controller. That byte value in the data byte reflects the value of the register being queried at the "command code" index. Note the bus directions, which are highlighted by the shaded label that is used on cycles during which the slaved backlight controller "owns" or "drives" the Data line. All other cycles are driven by the "host master."

Slave Device Address

The slave address contains 7 MSB plus one LSB as R/W bit, but these 8 bits are usually called Slave Address bytes. As shown in Figure 29, the high nibble of the Slave Address byte is 0×5 or 0101 b to denote the "backlight
controller class." Bit 3 in the lower nibble of the Slave Address byte is 1 . Bit 0 is always the R/W bit, as specified by the SMBus $/ \mathrm{I}^{2} \mathrm{C}$ protocol. Note: In this document, the device address will always be expressed as a full 8-bit address instead of the shorter 7-bit address typically used in other backlight controller specifications to avoid confusion. Therefore, if the device is in the write mode where bit 0 is 0 , the slave address byte is 0×58 or 01011000b. If the device is in the read mode where bit 0 is 1 , the slave address byte is 0×59 or 01011001 b .

FIGURE 29. SLAVE ADDRESS BYTE DEFINITION

SMBus/I $\mathbf{2}^{\mathbf{2}} \mathbf{C}$ Register Definitions

The backlight controller registers are Byte wide and accessible via the SMBus/I²C Read/Write Byte protocols. Their bit assignments are provided in the following sections with reserved bits containing a default value of " 0 ".

TABLE 2A. REGISTER LISTING

ADDRESS	REGISTER	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	DEFAULT VALUE	SMBus/I ${ }^{2}$ C PROTOCOL
0×00	PWM Brightness Control Register	BRT7	BRT6	BRT5	BRT4	BRT3	BRT2	BRT1	BRTO	0xFF	Read \& Write
0×01	Device Control Register	Reserved	Reserved	Reserved	Reserved	Reserved	SMBus/I²C_PWM	EXT_PWM	BL_CTL	0×00	Read \& Write
0×02	Fault/Status Register	Reserved	Reserved	2_CH_SD	1_CH_SD	BL_STAT	OV_CURR	THRM_SHDN	FAULT	0×00	Read Only
0×03	Si Revision Register	1	1	0	0	1	REV2	REV1	REVO	$0 \times C 8$	Read Only
0×07	DC Brightness Control Register	BRTDC7	BRTDC6	BRTDC5	BRTDC4	BRTDC3	BRTDC2	BRTDC1	BRTDC0	0xFF	Read \& Write

TABLE 2A. REGISTER LISTING (Continued)

ADDRESS	REGISTER	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	DEFAULT VALUE	SMBus/I ${ }^{2}$ C PROTOCOL
0×08	Configuration Register	DsbIPLL	DirectPWM	PWMtoDC	BstSlew Rate1	BstSlew Rate0	FSW	VSC1	VSC0	0x1F	Read \& Write
0×09	Output Channel Register	Reserved	Reserved	CH5	CH4	CH3	CH 2	CH1	CHO	0x3F	Read \& Write
$0 \times 0 \mathrm{~A}$	Phase Shift Deg	Equal Phase	Phase Shift6	Phase Shift5	Phase Shift4	Phase Shift3	Phase Shift2	Phase Shift1	Phase Shift0	0×00	Read \& Write
0x0B	PLLC	PLLDivBy4	PLL Divide6	PLL Divide5	PLL Divide4	PLL Divide3	PLL Divide2	PLL Divide1	PLL Divide0	0×10	Read \& Write

TABLE 2B. DATA BIT DESCRIPTIONS

ADDRESS	REGISTER	DATA BIT DESCRIPTIONS
0×00	PWM Brightness Control Register	BRT[7..0] = 256 steps of DPWM duty cycle brightness control
0×01	Device Control Register	SMBus $/ \mathrm{I}^{2} \mathrm{C}$ _PWM $=1$ selects SMBus $/ \mathrm{I}^{2} \mathrm{C}$ controlled PWM dimming EXT_PWM = 1 selects external applied PWM signal for PWM dimming BL_CTL = BL On/Off ($1=$ On, $0=$ Off $)$, default $=0$
0×02	Fault/Status Register	2_CH_SD = Two LED output channels are shutdown ($1=$ shutdown, $0=\mathrm{OK}$) 1_CH_SD $=$ One LED output channel is shutdown ($1=$ shutdown, $0=O K$) BL_STAT $=$ BL status ($1=\mathrm{BL}$ On, $0=B L$ Off) OV_CURR $=$ Input overcurrent ($1=$ Overcurrent condition, $0=$ Current OK) THRM_SHDN $=$ Thermal Shutdown ($1=$ Thermal fault, $0=$ Thermal OK) FAULT = Fault occurred (Logic "OR" of all of the fault conditions)
0×03	Si Revision Register	REV[2..0] = Silicon rev (Rev 0 through Rev 7 allowed for silicon spins)
0×07	DC Brightness Control Register	BRTDC[7..0] = 256 steps of DC brightness control
0x08	Configuration Register	DsbIPLL = When 1, PLL is disabled and PWM frequency is set by resistor to ground on PLLC pin. DirectPWM = Forces the PWM input signal to directly control the current sources. PWMtoDC = Switches current sources on and varies DC level rather than PWMing. BstSlewRate = Controls strength of FET driver. 00-25\% drive strength, $01-50 \%$ drive strength, $10-75 \%$ drive strength, $11-100 \%$ drive strength. FSW $=$ Switching frequencies selection, FSW $=0=1.2 \mathrm{MHz}$. FSW $=1=600 \mathrm{kHz}$ $\operatorname{VSC}[1 . .0]=$ Short circuit thresholds selection, $0=$ disabled, $1=3.6 \mathrm{~V}, 2=4.8 \mathrm{~V}, 3=5.8 \mathrm{~V}$
0×09	Output Channel Select and Fault Readout Register	CH[5..0] = Output Channel Read and Write. In Write, $1=$ Channel Enabled, $0=$ Channel Disabled. In Read, $1=$ Channel OK, $0=$ Channel Shutdown or Disabled
0x0A	Phase Shift Degree	EqualPhase $=$ Controls phase shift mode - When 0 , phase shift is defined by PhaseShift<6:0>. When 1, phase shift is $360 / \mathrm{N}$ (where N is the number of channels enabled). PS[6..0] = 7-bit Phase shift setting - phase shift between each channel is PhaseShift<6:0>/(255*PWMFreq). In direct PWM modes, phase shift between each channel is PhaseShift $<6: 0>/ 12.8 \mathrm{MHz}$. Note that user must not specify a value that gives >360 deg shift between first and last channels.
0x0B	$\mathrm{V}_{\text {SYNC }}$ Dimming Frequency Selection	PLLDivBy4 $=\mathrm{V}_{\text {SYNC }}$ incoming frequency automatic scaling PLLDivide[6..0] $=128$ steps of synchronized dimming frequency selection

PWM Brightness Control Register (0×00)

The Brightness control resolution has 256 steps of PWM duty cycle adjustment. The bit assignment is shown in Figure 30 . All of the bits in this Brightness Control Register can be read or write. Step 0 corresponds to the minimum step. Steps 1 to 255 represent the linear steps between 0.39% and 100% duty cycle with approximately 0.39% duty cycle adjustment per step.

- An SMBus $/ \mathrm{I}^{2} \mathrm{C}$ Write Byte cycle to Register 0×00 sets the PWM brightness level only if the backlight controller is in SMBus $/ \mathrm{I}^{2} \mathrm{C}$ mode (see Table 3

Operating Modes selected by Device Control Register Bits 1 and 2).

- An SMBus/ $/ \mathrm{I}^{2} \mathrm{C}$ Read Byte cycle to Register 0×00 returns the programmed PWM brightness level.
- An SMBus/I²C setting of 0xFF for Register 0x00 sets the backlight controller to the maximum brightness.
- An SMBus $/ \mathrm{I}^{2} \mathrm{C}$ setting of 0×00 for Register 0×00 sets the backlight controller to the minimum brightness output.
- Default value for Register 0x00 is 0xFF.

REGISTER 0x00	PWM BRIGHTNESS CONTROL REGISTER

BRT7	BRT6	BRT5	BRT4	BRT3	BRT2	BRT1	BRT0

Bit 7 (R/W) Bit $6(R / W)$ Bit 5 (R/W) Bit 4 (R/W) Bit 3 (R/W) Bit $2(R / W)$ Bit 1 (R/W) Bit 0 (R/W)

BIT ASSIGNMENT	BIT FIELD DEFINITIONS
BRT[7..0]	$=256$ steps of PWM brightness levels

FIGURE 30. DESCRIPTIONS OF BRIGHTNESS CONTROL REGISTER

REGISTER 0x01		DEVICE CONTROL REGISTER			SMBus/I ${ }^{2}$ C_PWM	EXT_PWM	BL_CTL
RESERVED	RESERVED	RESERVED	RESERVED	RESERVED			
Bit 7 (R/W)	Bit 6 (R/W)	Bit 5 (R/W)	Bit 4 (R/W)	Bit 3 (R/W)	Bit 2 (R/W)	Bit 1 (R/W)	Bit 0 (R/W)

BIT ASSIGNMENT	BIT FIELD DEFINITIONS
SMBus/I2C_PWM	$=$ PWM mode select bit $(1=$ absolute brightness, $0=\%$ change $)$ default $=0$
EXT_PWM	$=$ Brightness control select bit $(1=$ control by PWM, $0=$ control by SMBus $\left./ \mathrm{I}^{2} \mathrm{C}\right)$ default $=0$
BL_CTL	$=$ BL On/Off $(1=$ On, $0=$ Off $)$ default $=0$

FIGURE 31. DESCRIPTIONS OF DEVICE CONTROL REGISTER

Device Control Register (0x01)

- This register has two bits that control either SMBus $/ \mathrm{I}^{2} \mathrm{C}$ controlled or external PWM controlled PWM dimming and a single bit that controls the BL ON/OFF state. The remaining bits are reserved. The bit assignment is shown in Figure 31. All other bits in the Device Control Register will read as low unless otherwise written. Bits 7 and 6 are not implemented and will always read low.
- All reserved bits return a " 0 " when read.
- All defined control bits return their current, latched value when read.
- A value of 1 written to BL_CTL turns on the BL in 4 ms or less after the write cycle completes. The BL is deemed to be on when Bit 3 BL_STAT of Register 0×02 is 1 and Register 0×09 is not 0 .
- A value of 0 written to BL_CTL immediately turns off the BL. The BL is deemed to be off when Bit 3 BL_STAT of Register 0×02 is 0 and Register 0×09 is 0 .
- The default value for Register 0×01 is 0×00.

Fault/Status Register (0x02)

This register has 6 status bits that allow monitoring of the backlight controller's operating state. Bit 0 is a logical "OR" of all fault codes to simplify error detection. Not all of the bits in this register are fault related (Bit 3 is a simple BL status indicator). The remaining bits are reserved and return a " 0 " when read. All of the bits in this register are read-only, with the exception of bit 0, which can be cleared by writing to it.

- A Read Byte cycle to Register 0×02 indicates the current BL on/off status in BL_STAT (1 if the BL is on, 0 if the BL is off).
- A Read Byte cycles to Register 0x2 also returns FAULT as the logical OR of THRM_SHDN, OV_CURR, 2_CH_SD, and 1_CH_SD should these events occur.
- 1_CH_SD returns a 1 if one or more channels have faulted out.
- 2_CH_SD returns a 1 if two or more channels have faulted out.
- A fault will not be reported in the event that the BL is commanded on and then immediately off by the system.
- When FAULT is set to 1 , it will remain at 1 even if the signal which sets it goes away. FAULT will be cleared when the BL_CTL bit of the Device Control Register is toggled or when written low. At that time, if the fault condition is still present or reoccurs, FAULT will be set to 1 again. BL_STAT will not cause FAULT to be set.
- The default value for Register 0×02 is 0×00.

Si Revision Register (0x03)

The Si Revision register has 3 bits that allows up to 8 silicon revisions each. In order to keep the number of silicon revisions low, the revision field will not be updated unless the part will make it out to the user's factory. Thus, if during the first silicon engineering development process, 2 silicon spins were needed, the revision remains as 0 . All of the bits in this register are read-only.

- The default value for Register 0×03 is $0 \times C 8$.

The initial value of REV shall be 0 . Subsequent values of REV will increment by 1 .

```
REGISTER 0x02 
```

RESERVE D	RESERVE D	2_CH_SD	1_CH_SD	BL_STAT	OV_CURR	THRM_SHDN	FAULT
Bit 7 (R)	Bit 6 (R)	Bit 5 (R)	Bit 4 (R)	Bit 3 (R)	Bit $2(\mathrm{R})$	Bit $1(\mathrm{R})$	Bit $0(\mathrm{R})$

BIT	BIT ASSIGNMENT	BIT FIELD DEFINITIONS
Bit 5	2_CH_SD	$=$ Two LED output channels are shutdown ($1=$ shutdown, $0=$ OK)
Bit 4	$1 _$CH_SD	$=$One LED output channel is shutdown $(1=$ shutdown, $0=$ OK)
Bit 3	BL_STAT	$=$ BL Status $(1=$ BL On, $0=$ BL Off)
Bit 2	OV_CURR	$=$ Input Overcurrent $(1=$ Overcurrent condition, $0=$ Current OK)
Bit 1	THRM_SHDN	$=$ Thermal Shutdown ($1=$ Thermal Fault, $0=$ Thermal OK)
Bit 0	FAULT	$=$ Fault occurred (Logic "OR" of all of the fault conditions)

FIGURE 32. DESCRIPTIONS OF FAULT/STATUS REGISTER

REGISTER 0x03	ID REGISTER

LED PANEL	MFG3	MFG2	MFG1	MFG0	REV2	REV1	REV0
Bit 7 = 1	Bit $6(R)$	Bit $5(R)$	Bit 4 (R)	Bit $3(R)$	Bit $2(R)$	Bit $1(R)$	Bit $0(R)$

BIT ASSIGNMENT	BIT FIELD DEFINITIONS
MFG[3..0]	= Manufacturer ID. See "Si Revision Register (0x03)" on page 20. data 0 to 8 in decimal correspond to other vendors data 9 in decimal represents Intersil ID data 10 to 14 in decimal are reserved data 15 in decimal Manufacturer ID is not implemented
REV[2..0]	= Silicon rev (Rev 0 through Rev 7 allowed for silicon spins)

FIGURE 33. DESCRIPTIONS OF ID REGISTER

REGISTER 0x07	DC BRIGHTNESS CONTROL
REGISTER	

BRTDC7	BRTDC6	BRTDC5	BRTDC4	BRTDC3	BRTDC2	BRTDC1	BRTDC0
Bit $7(R / W)$	Bit $6(R / W)$	Bit $5(R / W)$	Bit $4(R / W)$	Bit $3(R / W)$	Bit $2(R / W)$	Bit $1(R / W)$	Bit $0(R / W)$

BIT ASSIGNMENT	BIT FIELD DEFINITIONS
BRTDC[7..0]	$=256$ steps of DC brightness levels

FIGURE 34. DESCRIPTIONS OF DC BRIGHTNESS CONTROL REGISTER

DC Brightness Control Register (0x07)

The DC Brightness Control Register 0x07 allows users to have additional dimming flexibility by:

1. Effectively achieving 16 -bits of dimming control when DC dimming is combined with PWM dimming or,
2. Achieving visual or audio noise free 8-bit DC dimming over potentially noisy PWM dimming.
The bit assignment is shown in Figure 34. All of the bits in this Register can be read or write. Steps 0 to 255 represent the linear steps of current adjustment in DC on the fly. It can also be considered as the peak current factory calibration feature to account for various LED production batch variations, but external EEPROM settings storing and restoring are required.

- An SMBus $/ I^{2}$ C Write Byte cycle to Register 0x07 sets the brightness level in DC only.
- An SMBus/ I^{2} C Read Byte cycle to Register 0×07 returns the current DC brightness level.
- Default value for Register 0x07 is 0xFF.

Configuration Register (0x08)

The Configuration Register provides many extra functions that users can explore in order to optimize the driver performance at a given application.
A DsbIPLL bit allows users to disable PLL mode. Instead this pin is used to program the PWM dimming frequency (up to 30 kHz) by connecting a resistor to ground by Equation 11:
$F_{\text {PWM }}=\frac{6.66 \times 10^{7}}{\text { RFPWM }}$
A DirectPWM bit allows Direct PWM where the output current follows the same input PWM signal.
A PWMtoDC bit allows users to provide convert PWM input into average DC LED current output with the level that is proportional to the input PWM duty cycle.
A BstSlewRate bit allows users to control the boost FET slew rate (the rates of turn-on and turn-off). The slew rate can be selected to four relative strengths when driving the internal boost FET. The purpose of this
function is to allow users to experiment the slew rate with respect to EMI effect in the system. In general, the slower the slew rate is, the lower the EMI interference to the surrounding circuits; however, the switching loss of the boost FET is also increased.
The FSW bit allows users to set the boost conversion switching frequency between 1.2 MHz and 600 kHz .
The Vsc bits allow users to set 3 levels of channel short-circuit thresholds or disable it.
The bit assignment is shown in Figure 35. The default value for Register 0×08 is $0 \times 1 \mathrm{~F}$.

Output Channel Select and Fault Readout Register (0x09)

This register can be read or write; the bit position corresponds to the channel. For example, bit 0 corresponds to Ch0 and bit 4 corresponds to Ch4 and so on. Writing data to this register, it enables the channels of interest. When reading data from this register, any disabled channel and any faulted out channel will read as 0 . This allows the user to determine which channel is faulty and optionally not enabling it in order to allow the rest of the system to continue to function. Additionally, a faulted out channel can be disabled and re-enabled in order to allow a retry for any faulty channel without having to power-down the other channels.
The bit assignment is shown in Figure 36. The default for Register 0×09 is $0 \times 3 \mathrm{~F}$.

\section*{| REGISTER 0x08 | CONFIGURATION REGISTER |
| :---: | :---: |}

DsbIPLL	DirectPWM	PWMtoDC	BstSlewRate1	BstSlewRate0	FSW	VSC1	VSC0
Bit 7 (R/W)	Bit $6(R / W)$	Bit $5(R / W)$	Bit 4 (R/W)	Bit 3 (R/W)	Bit $2(R / W)$	Bit $1(R / W)$	Bit $0(R / W)$

BIT ASSIGNMENT	BIT FIELD DEFINITIONS
DsbIPLL	When 1, PLL is disabled and PWM frequency is set by resistor to ground on PLLC pin.
DirectPWM	Forces the PWMI signal to directly control the current sources. Note that there is some synchronous delay between PWMI and current sources.
PWMtoDC	Switches current sources on and varies DC level rather than PWMing.
BstSlewRate[1:0]	Controls strength of FET driver. $00-25 \%$ drive strength, $01-50 \%$ drive strength, $10 \%-75 \%$ drive strength, $11-100 \%$ drive strength.
FSW	2 levels of Switching Frequencies $(0=1,200 \mathrm{kHz}, 1=600 \mathrm{kHz})$
VSC[1..0]	3 levels of Short-Circuit Thresholds $(0=$ disabled, $1=3.6 \mathrm{~V}, 2=4.8 \mathrm{~V}, 3=5.8 \mathrm{~V})$

FIGURE 35. DESCRIPTIONS OF CONFIGURATION REGISTER

BIT ASSIGNMENT	BIT FIELD DEFINITIONS
$\mathrm{CH}[5 . .0]$	$\mathrm{CH} 5=$ Channel $5, \mathrm{CH} 4=$ Channel 4 and so
on	

FIGURE 36. DESCRIPTIONS OF OUTPUT CHANNEL REGISTER

\section*{| REGISTER OXOA | PHASE SHIFT CONTROL REGISTER |
| :--- | :--- |}

EqualPhase	PhaseShift6	PhaseShift5	PhaseShift4	PhaseShift3	PhaseShift2	PhaseShift1	PhaseShift0
Bit $7(R / W)$	Bit $6(R / W)$	Bit $5(R / W)$	Bit $4(R / W)$	Bit $3(R / W)$	Bit $2(R / W)$	Bit $1(R / W)$	Bit $0(R / W)$

BIT ASSIGNMENT	BIT FIELD DEFINITIONS
EqualPhase	Controls phase shift mode - When 0, phase shift is defined by PhaseShift<6:0>. When 1, phase shift is $360 / \mathrm{N}$ (where N is the number of channels enabled).
PhaseShift[6..0]	7-bit Phase shift setting - phase shift between each channel is PhaseShift<6:0>/(255*PWMFreq)
	In direct PWM modes, phase shift between each channel is PhaseShift $<6: 0>/ 12.8 \mathrm{MHz}$ Note that user must not specify a value that gives >360 deg shift between first and last channels.

FIGURE 37. DESCRIPTIONS OF PHASE SHIFT CONTROL REGISTER

REGISTER OXOB \quad PLL CONTROL REGISTER

PLLDivBy4	PLLDivide6	PLLDivide5	PLLDivide4	PLLDivide3	PLLDivide2	PLLDivide1	PLLDivide0
Bit 7 (R/W)	Bit 6 (R/W)	Bit 5 (R/W)	Bit 4 (R/W)	Bit $3(R / W)$	Bit $2(R / W)$	Bit $1(R / W)$	Bit $0(R / W)$

BIT ASSIGNMENT	BIT FIELD DEFINITIONS
PLLDivBy4	PLL input frequency range control bit.
PLLDivide[6..0]	Controls PLL divide setting: If PLLDivBy4 $=0$, Freq(PWM $)=$ Freq(Vsync) $*(1+$ PLLDivide $) / 5$ If PLLDivBy4 $=1$, Freq(PWM) $=4 *$ Freq(Vsync) $*(1+$ PLLDivide $) / 5$

FIGURE 38. DESCRIPTIONS OF PLL CONTROL REGISTER

Phase Shift Control Register (0x0A)

The Phase Shift Control register is used to set phase delay between each channels. When bit 7 is set high, the phase delay is set by the number of channels enabled and the PWM frequency. The delay time is defined by the Equation 12:
$\mathrm{t}_{\text {DELAY }}=\left(\mathrm{t}_{\text {FPWM }} / \mathrm{N}\right)$
where N is the number of channels enabled, and $t_{\text {FPWM }}$ is the period of the PWM cycle. When bit 7 is set low, the phase delay is set by bits 6 to 0 and the PWM frequency. The delay time is defined by Equation 13:
$\mathrm{t}_{\text {DELAY }}=\left(\mathrm{PS}<6,0>\mathrm{xt}_{\text {FPWM }} /(255)\right)$
where PS is an integer from 0 to 127 , and $t_{\text {FPWM }}$ is the period of the PWM cycle. By default, all the register bits are set low, which sets zero delay between each channel. Note that the user should not program the register to give more than one period of the PWM cycle delay between the first and last enabled channels.

PLL Control Register (0x0B)

The PLL Control register is used to set up the PLL. The PWM frequency generated by the PLL is defined by Equation 14:
$\mathrm{f}_{\text {PWM }}=\left(\mathrm{f}_{\text {VSYNC }} \times \frac{(\mathrm{PLLDIV}+1)}{5}\right)$
where PLLDIVBY4 $=0$
$\mathrm{f}_{\mathrm{PWM}}=\left(4 \mathrm{xf}_{\mathrm{VSYNC}} \times \frac{(\mathrm{PLLDIV}+1)}{5}\right)$
where PLLDIVBY4 $=1$
where $f_{V S Y N C}$ is the frequency of the incoming signal on PLLDIV is an integer from 0 to 127. For incoming frequencies less than 40 Hz , the PLLDIVBY4 bit should be set high. The default setting for this register is 0×10, which gives a generated PWM frequency of 204 Hz with an incoming frame rate of 60 Hz .

Components Selections

According to the inductor Voltage-Second Balance principle, the change of inductor current during the switching regulator On time is equal to the change of inductor current during the switching regulator Off time. Since the voltage across an inductor is:
$\mathrm{V}_{\mathrm{L}}=\mathrm{L} \times \Delta \mathrm{I}_{\mathrm{L}} / \Delta \mathrm{t}$
and $\Delta \mathrm{I}_{\mathrm{L}} @$ On $=\Delta \mathrm{I}_{\mathrm{L}}$ @ Off, therefore:
$\left(V_{1}-0\right) / L \times D \times t_{S}=\left(V_{O}-V_{D}-V_{1}\right) / L \times(1-D) \times t_{S}$
where D is the switching duty cycle defined by the turn-on time over the switching period. V_{D} is Schottky diode forward voltage that can be neglected for approximation.
Rearranging the terms without accounting for V_{D} gives the boost ratio and duty cycle respectively as Equations 18 and 19:

$$
\begin{align*}
& V_{O} / V_{1}=1 /(1-D) \tag{EQ.18}\\
& D=\left(V_{O}-V_{1}\right) / V_{O} \tag{EQ.19}
\end{align*}
$$

Input Capacitor

Switching regulators require input capacitors to deliver peak charging current and to reduce the impedance of the input supply. This reduces interaction between the regulator and input supply, thereby improving system stability. The high switching frequency of the loop causes almost all ripple current to flow in the input capacitor, which must be rated accordingly.
A capacitor with low internal series resistance should be chosen to minimize heating effects and improve system efficiency, such as X5R or X7R ceramic capacitors, which offer small size and a lower value of temperature and voltage coefficient compared to other ceramic capacitors.
In Boost mode, input current flows continuously into the inductor; AC ripple component is only proportional to the rate of the inductor charging, thus, smaller value input capacitors may be used. It is recommended that an input capacitor of at least $10 \mu \mathrm{~F}$ be used. Ensure the voltage
rating of the input capacitor is suitable to handle the full supply range.

Inductor

The selection of the inductor should be based on its maximum current ($\mathrm{I}_{\mathrm{SAT}}$) characteristics, power dissipation (DCR), EMI susceptibility (shielded vs unshielded), and size. Inductor type and value influence many key parameters, including ripple current, current limit, efficiency, transient performance and stability.

The inductor's maximum current capability must be adequate enough to handle the peak current at the worst case condition. If an inductor core is chosen with too low a current rating, saturation in the core will cause the effective inductor value to fall, leading to an increase in peak to average current level, poor efficiency and overheating in the core. The series resistance, DCR, within the inductor causes conduction loss and heat dissipation. A shielded inductor is usually more suitable for EMI susceptible applications, such as LED backlighting.

The peak current can be derived from the voltage across the inductor during the Off period, as expressed in Equation 20:

$$
\begin{equation*}
\mathrm{IL}_{\text {peak }}=\left(\mathrm{V}_{\mathrm{O}} \times \mathrm{I}_{\mathrm{O}}\right) /\left(85 \% \times \mathrm{V}_{\mathrm{I}}\right)+1 / 2\left[\mathrm{~V}_{\mathrm{I}} \times\left(\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{I}}\right) /\left(\mathrm{L} \times \mathrm{V}_{\mathrm{O}} \times \mathrm{f}_{\mathrm{SV}}\right.\right. \tag{EQ.20}
\end{equation*}
$$

The choice of 85% is just an average term for the efficiency approximation. The first term is the average current, which is inversely proportional to the input voltage. The second term is the inductor current change, which is inversely proportional to L and $f_{S W}$. As a result, for a given switching frequency and minimum input voltage on which the system operates, the inductor $\mathrm{I}_{\text {SAT }}$ must be chosen carefully. At a given inductor size, usually the larger the inductance, the higher the series resistance because of the extra winding of the coil. Thus, the higher the inductance, the lower the peak current capability. The ISL97674 current limit should also be taken into account.

Output Capacitors

The output capacitor acts to smooth the output voltage and supplies load current directly during the conduction phase of the power switch. Output ripple voltage consists of the discharge of the output capacitor for I IPEAK during FET On and the voltage drop due to flowing through the ESR of the output capacitor. The ripple voltage can be shown as:
$\Delta \mathrm{V}_{\mathrm{CO}}=\left(\mathrm{I}_{\mathrm{O}} / \mathrm{C}_{\mathrm{O}} \times \mathrm{D} / \mathrm{f}_{\mathrm{S}}\right)+\left(\left(\mathrm{I}_{\mathrm{O}} \times \mathrm{ESR}\right)\right.$
The conservation of charge principle in Equation 21 also brings up the fact that during the boost switch Off period, the output capacitor is charged with the inductor ripple current minus a relatively small output current in boost topology. As a result, the user needs to select an output
capacitor with low ESR and enough input ripple current capability.

The choice of $X 7 R$ over $Y 5 V$ ceramic capacitor is highly recommend because $X 7 R$ capacitor is less sensitive to capacitance change overvoltage but the Y5V capacitor exhibits very high capacitance coefficient as shown in Figure 39. Y5V absolute capacitance can be reduced to $10 \sim 20 \%$ to its rated capacitance at maximum voltage. In any case, Y5V type of ceramic capacitor should be avoided.

Here are few recommendations at various applications:
For 20 mA applications with $\mathrm{V}_{\mathrm{IN}}>7 \mathrm{~V}, 1 \times 4.7 \mu \mathrm{~F}$ (X7R type) is sufficient.

For 20mA applications with $\mathrm{V}_{\mathrm{IN}}<7 \mathrm{~V}, 2 x 4.7 \mu \mathrm{~F}$ (X7R type) is required in some configurations.

FIGURE 39. X7R AND V5Y TYPES CERAMIC CAPACITORS

Channel Capacitor

Recommend using at least 1.5 nF capacitors from CH pins to $\mathrm{V}_{\text {OUT }}$. Larger capacitors will reduce LED current ripple at boost frequency, but will degrade transient performance at high PWM frequencies. The best value is dependant on PCB layout. Up to $4.7 n F$ is sufficient for most configurations.

Output Ripple

$\Delta \mathrm{V}_{\text {Co, }}$, can be reduced by increasing Co or f_{SW}, or using small ESR capacitors. In general, Ceramic capacitors are the best choice for output capacitors in small to medium sized LCD backlight applications due to their cost, form factor, and low ESR.

A larger output capacitor will also ease the driver response during PWM dimming Off period due to the longer sample and hold effect of the output drooping. The driver does not need to boost harder in the next On period that minimizes transient current. The output capacitor is also needed for compensation, and, in general one to two $4.7 \mu \mathrm{~F} / 50 \mathrm{~V}$ ceramic capacitors are suitable for netbook to notebook display backlight applications.

Schottky Diode

A high speed rectifier diode is necessary to prevent excessive voltage overshoot, especially in the boost configuration. Low forward voltage and reverse leakage current will minimize losses, making Schottky diodes the preferred choice. Although the Schottky diode turns on only during the boost switch Off period, it carries the same peak current as the inductor, and therefore, a suitable current rated Schottky diode must be used.

Applications

High Current Applications

Each channel of the ISL97674 can support up to 30 mA . For applications that need higher current, multiple channels can be grouped to achieve the desirable current. For example, the cathode of the last LED can be connected to CH 0 to CH 2 , this configuration can be treated as a single string with 90 mA current driving capability.

FIGURE 40. GROUPING MULTIPLE CHANNELS FOR HIGH CURRENT APPLICATIONS

Multiple Drivers Operation

For large LCD panels where more than 6 channels of LEDs are needed, multiple ISL97674s with each driver having its own supporting components can be controlled together with the common SMBus $/ \mathrm{I}^{2} \mathrm{C}$. While the ISL97674 does not have extra pins strappable slave address feature, but a separate EN signal can be applied to each driver for asynchronous operation. A trade-off of such scheme is that an exact faulty channel cannot be identified since both ICs have the same I2C slave address.

FIGURE 41. MULTIPLE DRIVERS OPERATION

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

DATE	REVISION	
$6 / 25 / 10$	FN7634.0	Initial Release.

Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL97674
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff
FITs are available from our website at http://rel.intersil.com/reports/search.php

For additional products, see www.intersil.com/product tree
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

L20.3x4

20 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE Rev 1, 3/10

TYPICAL RECOMMENDED LAND PATTERN

DETAIL "X"

NOTES:

1. Dimensions are in millimeters. Dimensions in () for Reference Only.
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3. Unless otherwise specified, tolerance: Decimal ± 0.05
4. Dimension applies to the metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip.
Tiebar shown (if present) is a non-functional feature.
5.

The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 indentifier may be either a mold or mark feature.

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

