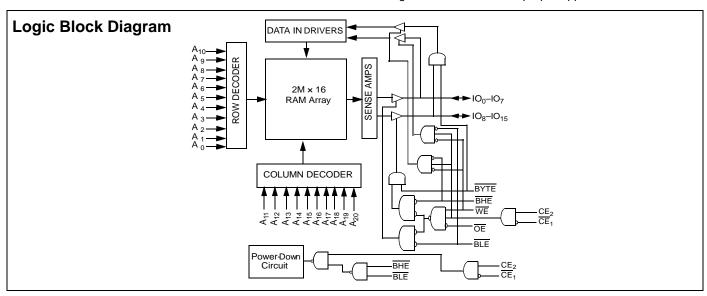


32 Mbit (2M x 16 / 4M x 8) Static RAM

Features

- TSOP I Configurable as 2M x 16 or as 4M x 8 SRAM
- Very High Speed

 □ 55 ns
- Wide Voltage Range
 □ 2.2V to 3.7V
- Ultra Low Standby Power


 □ Typical Standby Current: 3 µA
 - Maximum Standby Current: 25 μA
- Ultra Low Active Power
 - ☐ Typical Active Current: 4.5 mA at f = 1 MHz
- Easy Memory Expansion with \overline{CE}_1 , CE_2 and \overline{OE} Features
- Automatic Power Down when Deselected
- CMOS for Optimum Speed and Power
- Available in Pb-Free 48-Ball FBGA and TSOPI Package

Functional Description

The CY62177EV30 is a high performance CMOS static RAM organized as 2M words by 16 bits and 4M words by 8 bits [1]. This device features advanced circuit design to provide ultra low active current. It is ideal for providing More Battery Life (MoBL) in portable applications such as cellular telephones. The device also has an automatic power down feature that significantly reduces power consumption by 99 percent when addresses are not toggling. The device can also be put into standby mode when deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW or both BHE and BLE are HIGH). The input and output pins (IO0 through IO15) are placed in a high impedance state when: deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH and \overline{WE} LOW).

To write to the device, take Chip Enables ($\overline{\text{CE}}_1$ LOW and CE₂ HIGH) and Write Enable ($\overline{\text{WE}}$) input LOW. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from I/O pins (IO₀ through IO₇), is written into the location specified on the address pins (A₀ through A₂₀). If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from I/O pins (IO₈ through IO₁₅) is written into the location specified on the address pins (A₀ through A₂₀). To read from the device, take Chip Enables ($\overline{\text{CE}}_1$ LOW and CE₂ HIGH) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins appear on IO₀ to IO₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory appears on IO₈ to IO₁₅. See the Truth Table on page 9 for a complete description of read and write modes.

Pin #13 of the 48 TSOP1 package is a DNU pin that must be left floating at all times to ensure proper application.

Note

1. For best practice recommendations, refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Cypress Semiconductor Corporation
Document #: 001-09880 Rev. *D

198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600

Revised September 18, 2009

Pin Configuration

Figure 1. 48-Ball VFBGA [2, 3]

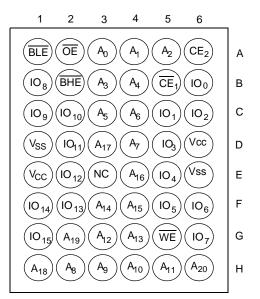
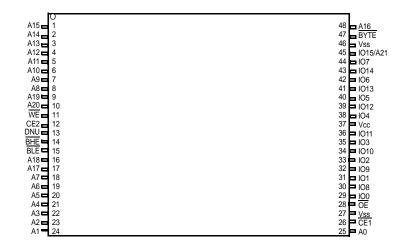



Figure 2. 48-Pin TSOPI (Forward) (2M x 16 / 4M x 8) [3, 4, 5]

Product Portfolio

	V _{CC} Range (V)								Power D	issipation	1	
Product			(V) Speed (ns) Operating I _{CC} (mA)				Standby I (
					f = 1 MHz		f = f _{Max}		Standby I _{SB2} (μA)			
	Min	Typ ^[6]	Max		Typ ^[6]	Max	Typ ^[6]	Max	Typ ^[6]	Max		
CY62177EV30LL	2.2	3.0	3.7	55	4.5	5.5	35	45	3	25		

- 2. Ball E3 for the FBGA package is used to upgrade to a 64M density.
- NC pins are not connected on the die.
- DNU Pin# 13 needs to be left floating to ensure proper application.
 The BYTE pin in the 48-TSOPI package has to be tied to V_{CC} to use the device as a 2M x 16 SRAM. The 48-TSOPI package can also be used as a 4M x 8 SRAM by tying the BYTE signal to V_{SS}. In the 4M x 8 configuration, Pin 45 is A21, while BHE, BLE, and IO₈ to IO₁₄ pins are not used.
- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25^{\circ}C$.

[+] Feedback

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested. Storage Temperature-65°C to + 150°C Ambient Temperature with Power Applied –55°C to + 125°C Supply Voltage to Ground Potential-0.3V to V_{CC(max)} + 0.3V DC Voltage Applied to Outputs in High Z State $^{[7,\ 8]}$-0.3V to V_{CC (max)} + 0.3V

DC Input Voltage [7, 8]	$-0.3V$ to $V_{CC (max)} + 0.3V$
Output Current into Outputs (LOW))20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch Up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	v cc ^[9]
CY62177EV30LL	Industrial	–40°C to +85°C	2.2V to 3.7V

Electrical Characteristics

Over the Operating Range

Parameter	Description	Toot (Conditions		55 ns		Unit
Parameter	Description	lesi	Test Conditions			Max	Offic
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	V _{CC} = 2.20V	2.0			V
		$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.70V	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	V _{CC} = 2.20V			0.4	V
		I _{OL} = 2.1 mA	$V_{CC} = 2.70V$			0.4	V
V _{IH}	Input HIGH Voltage	V _{CC} = 2.2V to 2.7V		1.8		V _{CC} + 0.3V	V
		$V_{CC} = 2.7V \text{ to } 3.7V$	2.2		V _{CC} + 0.3V	V	
V_{IL}	Input LOW Voltage	$V_{CC} = 2.2V \text{ to } 2.7V$	-0.3		0.6	V	
		$V_{CC} = 2.7V \text{ to } 3.7V$	For VFBGA package	-0.3		0.8	V
			For TSOP I package	-0.3		0.7 ^[10]	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$		-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}, O$	utput Disabled	-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{Max} = 1/t_{RC}$	$V_{CC} = V_{CC(max)}$		35	45	mA
	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS levels		4.5	5.5	mA
I _{SB2} ^[5, 11]	Automatic CE Power Down Current—CMOS Inputs	$CE_1 \ge V_{CC} - 0.2V \text{ or } $ $V_{IN} \ge V_{CC} - 0.2V \text{ or } $ $f = 0, V_{CC} = 3.7V$		3	25	μА	

Capacitance

Tested initially and after any design or process changes that may affect these parameters.

Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ)}$	15	pF
C _{OUT}	Output Capacitance		15	pF

- 7. V_{IL(min)} = -2.0V for pulse durations less than 20 ns.
 8. V_{IH(max)} = V_{CC} + 0.75V for pulse durations less than 20 ns.
 9. Full Device AC operation assumes a 100 μs ramp time from 0 to V_{CC} (min) and 200 μs wait time after V_{CC} stabilization.
 10. Under DC conditions the device meets a V_{IL} of 0.8V. However, in dynamic conditions Input LOW Voltage applied to the device must not be higher than 0.7V. This is applicable to TSOP I package only.

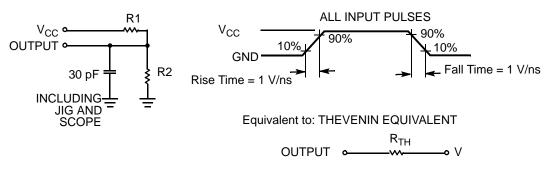
 11. Chip enables (CE₁ and CE₂) need to be tied to CMOS levels to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

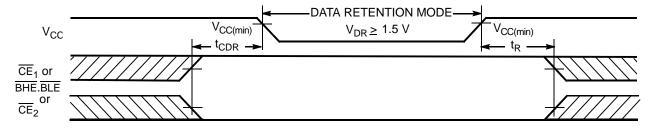
Thermal Resistance

Tested initially and after any design or process changes that may affect these parameters.

Parameter	Description	Test Conditions	TSOPI	FBGA	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3 x 4.5 inch, 2-layer printed circuit board	44.66	28.12	°C/W
Θ ^{JC}	Thermal Resistance (Junction to Case)		12.12	12.06	°C/W

Figure 3. AC Test Loads and Waveforms




Table 1. AC Test Loads

Parameter	2.5V	3.3V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V_{TH}	1.20	1.75	V

Data Retention Characteristics Over the Operating Range

Parameter	Description	Conditions	Min	Typ ^[6]	Max	Unit
V_{DR}	V _{CC} for Data Retention		1.5			V
I _{CCDR} [11]	Data Retention Current	$V_{CC} = 1.5V, \overline{CE}_1 \ge V_{CC} - 0.2V, CE_2 \le 0.2V, V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$			17	μА
t _{CDR} ^[12]	Chip Deselect to Data Retention Time		0			ns
t _R ^[13]	Operation Recovery Time		t _{RC}			ns

Figure 4. Data Retention Waveform [14]

- 12. Tested initially and after any design or process changes that may affect these parameters.
- 13. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs.

 14. BHE.BLE is the AND of both BHE and BLE. Chip is deselected by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics

Over the Operating Range [15]

D	Description	55	11-26	
Parameter	Description	Min	Max	- Unit
Read Cycle		•		_
t _{RC}	Read Cycle Time	55		ns
t _{AA}	Address to Data Valid		55	ns
t _{OHA}	Data Hold from Address Change	6		ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to Data Valid		55	ns
t _{DOE}	OE LOW to Data Valid		25	ns
t _{LZOE}	OE LOW to LOW Z ^[16]	5		ns
t _{HZOE}	OE HIGH to High Z ^[16, 17]		18	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[16]	10		ns
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z ^[16, 17]		18	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to Power Up	0		ns
t _{PD}	CE ₁ HIGH and CE ₂ LOW to Power Down		55	ns
t _{DBE}	BLE/BHE LOW to Data Valid		55	ns
t _{LZBE}	BLE/BHE LOW to Low Z [16]	10		ns
t _{HZBE}	BLE/BHE HIGH to HIGH Z [16, 17]		18	ns
Write Cycle ^[18]		-	1	
t _{WC}	Write Cycle Time	55		ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to Write End	40		ns
t _{AW}	Address Setup to Write End	40		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Setup to Write Start	0		ns
t _{PWE}	WE Pulse Width	40		ns
t _{BW}	BLE/BHE LOW to Write End	40		ns
t _{SD}	Data Set up to Write End	25		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High-Z ^[16, 17]		20	ns
t _{LZWE}	WE HIGH to Low-Z ^[16]	10		ns

^{15.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 1V/ns, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in AC Test Loads on page 4.

16. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, t_{HZDE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

^{17.} t_{HZOE}, t_{HZDE}, and t_{HZWE} transitions are measured when the outputs enter a high impedence state.

18. The internal Write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write.

Switching Waveforms

Figure 5. Read Cycle 1 (Address Transition Controlled)^[19, 20]

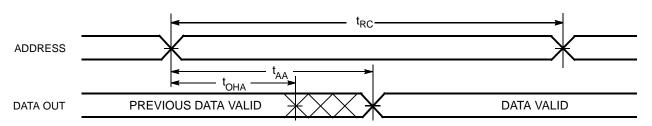
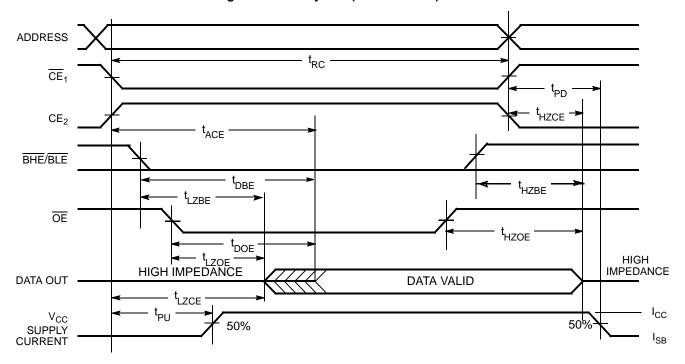



Figure 6. Read Cycle 2 (OE Controlled)[20, 21]

^{19. &}lt;u>The</u> device is continuously selected. <u>OE</u>, <u>CE</u>₁ = V_{IL}, <u>BHE</u> and/or <u>BLE</u> = V_{IL}, and CE₂ = V_{IH}. 20. <u>WE</u> is HIGH for read cycle.

^{21.} Address valid prior to or coincident with \overline{CE}_1 , \overline{BHE} , \overline{BLE} transition LOW and CE_2 transition HIGH.

Switching Waveforms (continued)

Figure 7. Write Cycle 1 (WE Controlled) [18, 22, 23, 24]

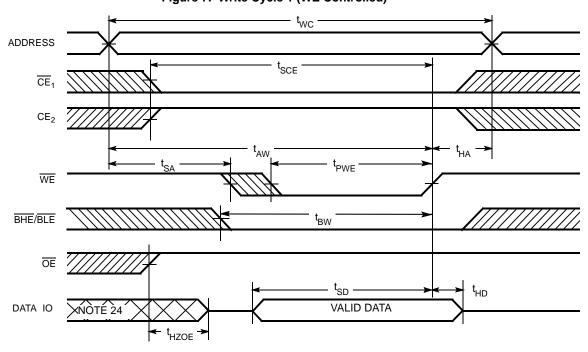
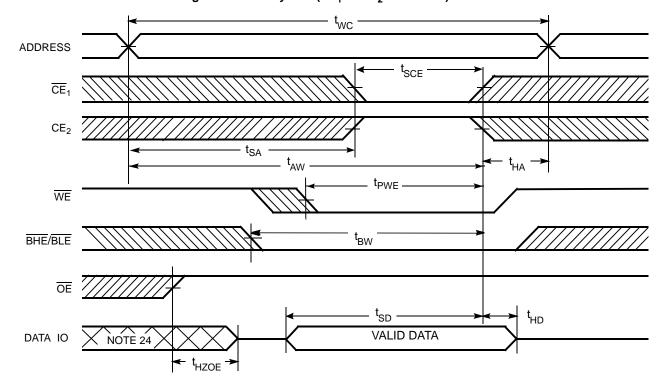



Figure 8. Write Cycle 2 ($\overline{\text{CE}}_1$ or CE_2 Controlled) [18, 22, 23, 24]

- 22. Data I/O is high impedance if $\overline{OE} = V_{IH}$.

 23. If \overline{CE}_1 goes HIGH and CE_2 goes LOW simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high impedance state.

 24. During this period the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)

Figure 9. Write Cycle 3 (WE Controlled, OE LOW)[23, 24]

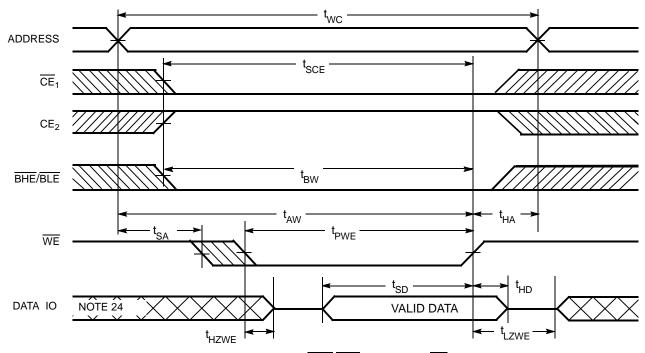
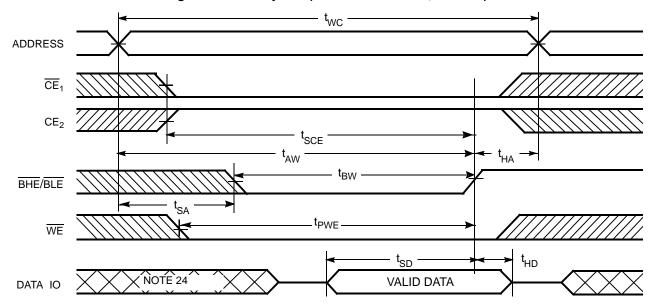
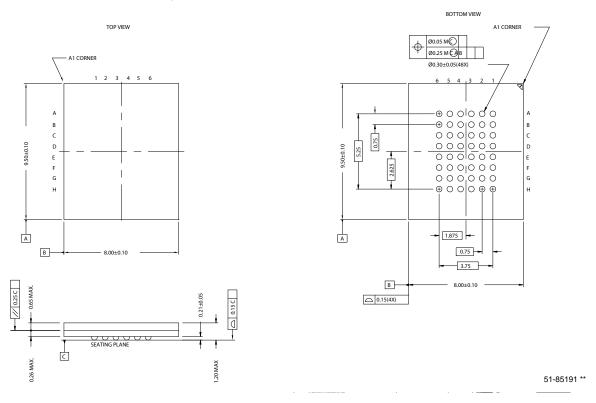



Figure 10. Write Cycle 4 ($\overline{\rm BHE/BLE}$ Controlled, $\overline{\rm OE}$ LOW) $^{[23,24]}$

Truth Table

CE ₁	CE ₂	WE	ŌĒ	BHE	BLE	Inputs Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	Deselect/Power Down	Standby (I _{SB})
Х	L	Х	Х	Х	Х	High Z	Deselect/Power Down	Standby (I _{SB})
Х	Х	Х	Х	Н	Н	High Z	Deselect/Power Down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (IO ₀ –IO ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	High Z (IO ₈ –IO ₁₅): Data Out (IO ₀ –IO ₇)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	Data Out (IO ₈ –IO ₁₅); High Z (IO ₀ –IO ₇)	Read	Active (I _{CC})
L	Н	L	Х	L	L	Data In (IO ₀ –IO ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	High Z (IO ₈ –IO ₁₅); Data In (IO ₀ –IO ₇)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	Data In (IO ₈ –IO ₁₅); High Z (IO ₀ –IO ₇)	Write	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})

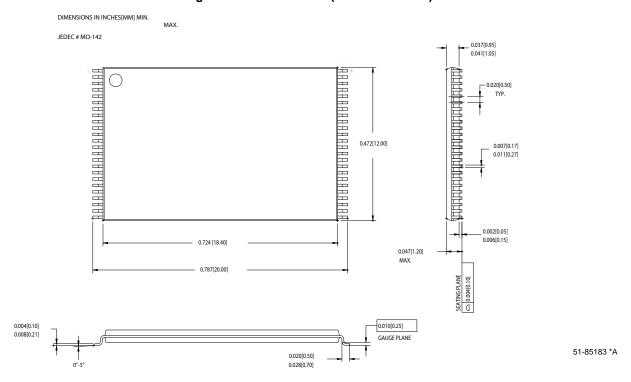
Ordering Information


Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62177EV30LL-55BAXI	51-85191	48-Ball Fine Pitch Ball Grid Array (8 x 9.5 x 1.2 mm) Pb-Free	Industrial
	CY62177EV30LL-55ZXI	51-85183	48-Pin TSOP I (12 x 18.4 x 1 mm) Pb-Free	

Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts.

Package Diagrams

Figure 11. 48-Ball FBGA (8 x 9.5 x 1.2 mm)



[+] Feedback

Package Diagrams (continued)

Figure 12. 48-Pin TSOP I (12 x 18.4 x 1 mm)

Document History Page

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	498562	NXR	See ECN	New Datasheet
*A	2544845	VKN/PYRS	07/29/08	Removed 45 ns speed bin Added 70 ns speed bin Added 48-Pin TSOPI package Added footnote# 4 related to TSOPI package Added footnote# 9 related to I _{SB2} and I _{CCDR} Updated Ordering information table
*B	2589750	VKN/PYRS	10/15/08	Changed pin functions of pin# 10 from NC to A20 and pin# 13 from A20 to DNU in 48-Pin TSOPI package
*C	2668432	VKN/PYRS	03/03/09	Replaced 70 ns speed with 55 ns Extended the V_{CC} range to 3.7V Changed $I_{CC\ (max)}$ spec from 2.8 mA to 4.5 mA at f = 1 MHz Changed $I_{CC\ (max)}$ spec from 30 mA to 45 mA at f = f _(max) Removed I_{SB1} spec Changed $I_{SB2\ (max)}$ spec from 17 μ A to 25 μ A Modified footnote #10
*D	2779867	VKN	10/06/09	Converted from Preliminary to Final Changed $I_{CC\ (max)}$ spec from 4.5 mA to 5.5 mA at f = 1 MHz Changed $I_{CC\ (typ)}$ spec from 2.2 mA to 4.5 mA at f = 1 MHz Changed $I_{CC\ (typ)}$ spec from 28 mA to 35 mA at f = f _(max) Added V_{IL} spec for TSOP I package and footnote# 10 Changed I_{CUT} spec from 10 pF to 15 pF Included thermal specs Changed I_{CHA} spec from 10ns to 6ns

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

PSoC psoc.cypress.com
Clocks & Buffers clocks.cypress.com
Wireless wireless.cypress.com
Memories memory.cypress.com
Image Sensors image.cypress.com

© Cypress Semiconductor Corporation, 2006-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 001-09880 Rev. *D

Revised September 18, 2009

Page 13 of 13

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.