## 4-Channel LED Driver with Phase Shift Control

## ISL97675

The ISL97675 is an LED driver that drives 4 channels of low power LEDs from 4.5 V to 26 V input and up to 45 V output.

The ISL97675 compensates for non-uniformity of the forward voltage drops in the LED strings with its 4 voltage controlled-current source channels. Its headroom control monitors the highest LED forward voltage string for output regulation, to minimize the voltage headroom and power loss in the typical multi-string operation.

The ISL97675 offers two PWM Dimming modes: The part digitizes the incoming 100 Hz to 30 kHz PWM signal and provides 8-bit PWM dimming with phase shift function. Another mode is direct PWM mode without phase shift, where the dimming frequency follows the input PWM signal and the minimum on time can be as short as 350 ns .

The ISL97675 features channel phase shift control to minimize the input, output ripple characteristics and load transients as well as spreading the light output to help eliminate or reduce the video and audio noise interference from the backlight driver operation.

## Features

- $4 \times 30 \mathrm{~mA}$ Channels
- 45V Output Max
- 4.5V to 26 V Input
- Channel Phase Shift PWM Dimming with 8-bit resolution
- 0.007\% Direct PWM dimming at 200 Hz
- Current Matching of $\pm 1.5 \%$ from $1 \% \sim 100 \%$ Dimming
- Dynamic Headroom Control
- Protections
- String Open/Short Circuit, $\mathrm{V}_{\text {OUT }}$ Short Circuit Overvoltage, and Over-temperature Protections
- Optional Master Fault Protection
- Selectable 600 kHz or 1.2 MHz Switching Frequency
- 20 Ld QFN 4mmx4mm Package

Applications* (see page 19)

- Netbook Displays LED Backlighting
- Notebook Displays LED Backlighting


## Typical Application Circuit



## Block Diagram



## Pin Configuration



Pin Descriptions ( $\mathrm{I}=$ Input, $\mathrm{O}=$ Output, $\mathrm{S}=$ Supply)

| PIN NAME | PIN NO. | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| VDDIO | 1 | S | Decouple with capacitor for internally generated supply rail. |
| EN | 2 | I | Enable |
| FSW/PhaseShift | 3 | I | FSW $=0 \sim 0.25$ * VDDIO, Boost Switching Frequency $=600 \mathrm{kHz}$ with phase shift. FSW $=0.25 *$ VDDIO $\sim 0.5 *$ VDDIO, Boost Switching Frequency $=600 \mathrm{kHz}$ without phase shift. <br> FSW $=0.5$ * VDDIO $\sim 0.75$ * VDDIO, Boost Switching Frequency $=1.2 \mathrm{MHz}$ without phase shift. <br> FSW $=0.75$ * VDDIO $\sim$ VDDIO, Boost Switching Frequency $=1.2 \mathrm{MHz}$ with phase shift. |
| ISET | 4 | I | Resistor connection for setting LED current, (see Equation 3 for calculating the ILEDPeak). |
| NC | 5,10 | I | No Connect. |
| FB4 | 6 | I | Input 4 to current source, FB, and monitoring. |
| FB3 | 7 | I | Input 3 to current source, FB, and monitoring. |
| AGND | 8,9 | S | Analog Ground for precision circuits. |
| FB2 | 11 | I | Input 2 to current source, FB, and monitoring. |
| FB1 | 12 | I | Input 1 to current source, FB, and monitoring. |
| RFPWM/DirectPWM | 13 | I | External PWM dimming with frequency modulation or Direct PWM dimming without frequency modulation. <br> When this pin is not biased and a resistor is connected to ground, the dimming frequency will be set by the Setting Resistor. <br> When this pin is floating, the part enters Direct PWM mode such that the dimming follows the input PWM signal without frequency modulation. |
| OVP | 14 | I | Overvoltage protection input. |
| PGND | 15 | S | Power ground (LX Power return). |
| SW | 16 | 0 | Input to boost switch. |

## Pin Descriptions (I = Input, O = Output, S = Supply) (Continued)

| PIN NAME | PIN NO. | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :--- |
| FAULT | 17 | O | Gate drive signal for external fault MOSFET. This pin should be left floating when <br> fault MOSFET is omitted in the application. |
| COMP | 18 | I | External compensation pin. |
| VIN | 19 | S | LED driver supply voltage. |
| PWM | 20 | I | PWM brightness control pin. |
| EP | 21 | S | Connect Exposed Pad (EP) to junction of AGND and PGND with adequate Vias to <br> form a star ground. |

## Ordering Information

| PART NUMBER <br> (Notes 1, 2, 3) | PART <br> MARKING | TEMP RANGE <br> $\left({ }^{\circ} \mathbf{C}\right)$ | PACKAGE <br> (Pb-free) | PKG. <br> DWG. \# |
| :--- | :---: | :---: | :---: | :---: |
| ISL97675IRZ | 976 75IRZ | -40 to +85 | $20 \mathrm{Ld} \mathrm{4} \mathrm{\times 4} \mathrm{QFN}$ | L20.4×4C |

NOTES:

1. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and $100 \%$ matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL97675. For more information on MSL please see techbrief TB363.

## Table of Contents

Typical Application Circuit ..... 1
Block Diagram ..... 2
Pin Descriptions ( $\mathbf{I}=$ Input, $\mathbf{O}=$ Output, $\mathbf{S}=$ Supply) ..... 3
Absolute Maximum Ratings ..... 6
Thermal Information ..... 6
Operating Conditions ..... 6
Electrical Specifications ..... 6
Typical Performance Curves ..... 9
Theory of Operation ..... 12
PWM Boost Converter ..... 12
OVP ..... 12
Enable ..... 12
Power Sequence ..... 12
Current Matching and Current Accuracy ..... 12
Dynamic Headroom Control ..... 12
Dimming Controls ..... 12
Maximum DC Current Setting ..... 12
PWM Control. ..... 13
Phase Shift Control ..... 13
PWM Dimming Frequency Adjustment ..... 14
Direct PWM Dimming ..... 14
Switching Frequency ..... 14
Inrush Control and Soft-Start ..... 14
Fault Protection and Monitoring ..... 15
Short Circuit Protection (SCP) ..... 15
Open Circuit Protection (OCP) ..... 15
Overvoltage Protection (OVP) ..... 15
Undervoltage Lockout ..... 15
Master Fault Protection ..... 15
Over-Temperature Protection (OTP) ..... 15
Components Selections ..... 17
Input Capacitor ..... 17
Inductor ..... 18
Output Capacitors ..... 18
Channel Capacitor ..... 18
Output Ripple ..... 18
Schottky Diode ..... 18
Applications ..... 19
High Current Applications ..... 19
Revision History ..... 19
Products ..... 19
Package Outline Drawing ..... 20


## Thermal Information

Thermal Resistance (Typical) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ 20 Ld QFN Package (Notes 4, 5, 7). 392.5 Thermal Characterization (Typical) $\mathrm{PSI}_{\mathrm{JT}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ 20 Ld QFN Package (Note 6) . . . . . . . . . . . . 3
Maximum Continuous Junction Temperature . . . . . $+125^{\circ} \mathrm{C}$ Storage Temperature . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Pb-free reflow profile. . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp

## Operating Conditions

Temperature Range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.
NOTES:
4. $\theta_{\mathrm{JA}}$ is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief TB379.
5. For $\theta_{\mathrm{JC}}$, the "case temp" location is the center of the exposed metal pad on the package underside.
6. $\mathrm{PSI}_{\mathrm{JT}}$ is the PSI junction-to-top thermal characterization parameter. If the package top temperature can be measured with this rating then the die junction temperature can be estimated more accurately than the $\theta_{\mathrm{JC}}$ and $\theta_{\mathrm{JC}}$ thermal resistance ratings.
7. Refer to JESD51-7 high effective thermal conductivity board layout for proper via and plane designs.

Electrical Specifications All specifications below are tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{ISET}}=19.6 \mathrm{k} \Omega$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

| SYMBOL | PARAMETER | CONDITION | MIN <br> (Note 8) | TYP | MAX <br> (Note 8) | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## GENERAL

| $\mathrm{V}_{\text {IN }}$ (Note 9) | Backlight Supply Voltage |  | 4.5 |  | 26 | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IVIN_STBY | $\mathrm{V}_{\text {IN }}$ Shutdown Current | $\mathrm{EN}=0 \mathrm{~V}$ |  |  | 10 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {OUT }}$ | Output Voltage | $\begin{aligned} & 4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}} \leq 26 \mathrm{~V}, \\ & \mathrm{~F}_{\mathrm{SW}}=600 \mathrm{kHz} \end{aligned}$ |  |  | 45 | V |
|  |  | $\begin{aligned} & 6.75 \mathrm{~V}<\mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}, \\ & \mathrm{~F}_{\mathrm{SW}}=1.2 \mathrm{MHz} \end{aligned}$ |  |  | 45 | V |
|  |  | $\begin{aligned} & 4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}} \leq 6.75 \mathrm{~V}, \\ & \mathrm{~F}_{\mathrm{SW}}=1.2 \mathrm{MHz} \end{aligned}$ |  |  | $\mathrm{V}_{\text {IN }} / 0.15$ | V |
| $\mathrm{V}_{\text {UVLO }}$ | Undervoltage Lockout Threshold |  | 2.6 | 3.1 | 3.3 | V |
| VUVLO_HYS | Undervoltage Lockout Hysteresis |  |  | 320 |  | mV |

## REGULATOR

| $\mathrm{V}_{\text {DDIO }}$ | LDO Output Voltage | $\mathrm{V}_{\text {IN }}>5.5 \mathrm{~V}$ | $\mathbf{4 . 6}$ | 4.8 | $\mathbf{5}$ | V |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\text {VDDIO_STBY }}$ | Standby Current | $\mathrm{EN}=0 \mathrm{~V}$ |  | $\mathbf{1 0}$ | $\mu \mathrm{~A}$ |  |
| $\mathrm{I}_{\text {VIN }}$ | Driver Input Current | $100 \%$ Dimming |  | 9 | mA |  |
| $\mathrm{~V}_{\text {LDO }}$ | VDDIO LDO Dropout VoItage | $\mathrm{V}_{\text {IN }}>5.5 \mathrm{~V}$, <br> $\mathrm{I}_{\text {VDDIO }}=20 \mathrm{~mA}$ |  | 30 | $\mathbf{2 0 0}$ | mV |
| $\mathrm{EN}_{\text {Low }}$ | Guaranteed Range for EN Input Low <br> Voltage |  |  |  | $\mathbf{0 . 5}$ | V |
| $\mathrm{EN}_{\mathrm{Hi}}$ | Guaranteed Range for EN Input High <br> Voltage |  | $\mathbf{1 . 8}$ |  |  | V |
| $\mathrm{t}_{\text {ENLOw }}$ | EN Low Time before Shut-Down |  |  | 29.5 |  | ms |

Electrical Specifications All specifications below are tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{ISET}}=19.6 \mathrm{k} \Omega$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (Continued)

| SYMBOL | PARAMETER | CONDITION | MIN <br> (Note 8) | TYP | MAX <br> (Note 8) | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BOOST |  |  |  |  |  |  |
| SWILimit | Boost FET Current Limit |  | 1.5 | 2.2 | 2.7 | A |
| $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ | Internal Boost Switch ON-Resistance | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 230 | 300 | $\mathrm{m} \Omega$ |
| SS | Soft-Start | 100\% LED Duty Cycle |  | 14 |  | ms |
| Eff_peak | Peak Efficiency | $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, 48 LEDs, 20 mA each, $\mathrm{L}=10 \mu \mathrm{H}$ with DCR $101 \mathrm{~m} \Omega$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 92 |  | \% |
| $\Delta \mathrm{I}_{\text {OUT }} / \Delta \mathrm{V}_{\text {IN }}$ | Line Regulation |  |  | 0.1 |  | \% |
| $\mathrm{D}_{\text {MAX }}$ | Boost Maximum Duty Cycle | FSW < 0.5 * VDDIO | 91 |  |  | \% |
|  |  | FSW > 0.5 * VDDIO | 82 |  |  | \% |
| $\mathrm{D}_{\text {MIN }}$ | Boost Minimum Duty Cycle | FSW < 0.5 * VDDIO |  |  | 8.5 | \% |
|  |  | FSW > 0.5 * VDDIO |  |  | 16.5 | \% |
| $\mathrm{F}_{\text {SW }}$ | Boost Switching Frequency | FSW <0.5 * VDDIO | 475 | 600 | 640 | kHz |
|  |  | FSW >0.5 * VDDIO | 950 | 1200 | 1280 | kHz |
| ISW_leakage | SW Leakage Current | $S W=45 V, E N=0$ |  |  | 10 | $\mu \mathrm{A}$ |
| CURRENT SOURCES |  |  |  |  |  |  |
| $\mathrm{I}_{\text {MATCH }}$ | DC Channel-to-Channel Current Matching | $\begin{aligned} & \mathrm{R}_{\text {ISET }}=19.6 \mathrm{k} \Omega, \\ & \left(\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}\right) \end{aligned}$ | -1.5 |  | +1.5 | \% |
|  |  | $\begin{aligned} & \mathrm{R}_{\mathrm{ISET}}=39.2 \mathrm{k} \Omega, \\ & \left(\mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}\right) \end{aligned}$ | -1.5 |  | +1.5 | \% |
| $\mathrm{I}_{\text {ACC }}$ | Current Accuracy | $\begin{aligned} & \mathrm{R}_{\mathrm{ISET}}=19.6 \mathrm{k} \Omega, \\ & \left(\mathrm{I}_{\mathrm{OUT}}=20 \mathrm{~mA}\right) \end{aligned}$ | -1.5 |  | +1.5 | \% |
| $\mathrm{V}_{\text {HEADROOM }}$ | Dominant Channel Current Source Headroom at FBx Pin |  |  | 500 |  | mV |
| $\mathrm{V}_{\text {ISET }}$ | Voltage at $\mathrm{I}_{\text {SET }}$ Pin |  | 1.2 | 1.22 | 1.24 | V |
| $\mathrm{I}_{\text {LED max }}$ | Maximum LED Current per Channel | ```4-Channel, }\mp@subsup{\textrm{V}}{\textrm{IN}}{}=4.5\textrm{V} V F``` |  | 30 |  | mA |
| PWM INTERFACE |  |  |  |  |  |  |
| $\mathrm{V}_{\text {IL }}$ | Guaranteed Range for PWM Input Low Voltage |  |  |  | 0.8 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | Guaranteed Range for PWM Input High Voltage |  | 1.5 |  |  | V |
| FPWMI | PWMI Input Frequency Range |  | 100 |  | 30,000 | Hz |
| PWMACC | PWMI Input Accuracy |  |  | 8 |  | bits |
| PWMHYST | PWMI Input Allowable Jitter Hysteresis |  | -0.46 |  | +0.46 | LSB |
| PWM GENERATOR |  |  |  |  |  |  |
| FPWM | PWM Dimming Frequency Range | RFPWM $=1.5 \mathrm{M} \Omega$ | 45 | 50 | 55 | Hz |
|  |  | RFPWM $=1.5 \mathrm{k} \Omega$ | 33 | 37 | 39 | kHz |
| VRFPWM | Voltage at RFPWM pin |  | 1.19 | 1.22 | 1.24 | V |
| tDIRECTPWM | Direct PWM Minimum On Time | Direct PWM Mode | 250 |  | 350 | ns |

Electrical Specifications
All specifications below are tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{EN}=3.3 \mathrm{~V}, \mathrm{R}_{\text {ISET }}=19.6 \mathrm{k} \Omega$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (Continued)

| SYMBOL | PARAMETER | CONDITION | MIN <br> (Note 8) | TYP | MAX <br> (Note 8) | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FAULT DETECTION |  |  |  |  |  |  |
| $\mathrm{V}_{\text {SC }}$ | Channel Short Circuit Threshold |  | 3.15 | 3.6 | 4.3 | V |
| $\mathrm{V}_{\text {TEMP_ACC }}$ | Over-Temperature Threshold Accuracy |  |  | 5 |  | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\text {TEMP_S }}$ SHDN | Over-Temperature Shutdown |  |  | 150 |  | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\text {OVPlo }}$ | Overvoltage Limit on OVP Pin |  | 1.2 | 1.22 | 1.24 | V |
| OVP FAULT | OVP Short Detection Fault Level |  |  | 350 |  | mV |
| $\mathrm{I}_{\text {FAULT }}$ | Fault Pull-down Current | $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ | 8 | 15 | 25 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {FAULT }}$ | Fault Clamp Voltage with Respect to $\mathrm{V}_{\text {IN }}$ | $\mathrm{V}_{\mathrm{IN}}=12, \mathrm{~V}_{\mathrm{IN}}-\mathrm{V}_{\text {FAULT }}$ | 6 | 7 | 8.3 | V |
| SWStart_thres | SW Start-Up Threshold |  | 1.2 | 1.4 | 1.5 | V |
| ISW_Startup | SW Start-Up Current |  | 1 | 3.5 | 5 | mA |

## NOTES:

8. Parameters with MIN and/or MAX limits are $100 \%$ tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.
9. At minimum $V_{\text {IN }}$ of 4.5 V , the maximum output is limited by the $\mathrm{V}_{\text {OUT }}$ specifications. Also at maximum $\mathrm{V}_{\text {IN }}$ of 26 V , the minimum $V_{\text {OUT }}$ is 28 V but minimum $\mathrm{V}_{\text {OUT }}$ can be lower at lower $\mathrm{V}_{\text {IN }}$. In general, the $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ relationship is bounded by $\mathrm{D}_{\text {MAX }}$ and $D_{\text {min }}$.

## Typical Performance Curves



FIGURE 1. EFFICIENCY vs 20mA LED CURRENT (100\% LED DUTY CYCLE) for 4P12S vs $\mathrm{V}_{\text {IN }}$


FIGURE 3. EFFICIENCY vs $\mathrm{V}_{\text {IN }}$ vs SWITCHING FREQUENCY AT 20mA for 4P12S (100\% LED DUTY CYCLE)


FIGURE 5. EFFICIENCY vs $\mathbf{V}_{\text {IN }}$ vs TEMPERATURE AT 20 mA


FIGURE 2. EFFICIENCY vs 30mA LED CURRENT ( $\mathbf{1 0 0 \%}$ LED DUTY CYCLE) for 4P10S vs $V_{\text {IN }}$


FIGURE 4. EFFICIENCY vs $V_{\text {IN }}$ vs SWITCHING FREQUENCY AT 30mA for 4P10S(100\% LED DUTY CYCLE)


FIGURE 6. CHANNEL-TO-CHANNEL CURRENT MATCHING

## Typical Performance Curves (continued)



FIGURE 7. CURRENT LINEARITY vs LOW LEVEL PWM DIMMING DUTY CYCLE vs $V_{\text {IN }}$


FIGURE 9. VHEADROOM $v s V_{\text {IN }}$ vs TEMPERATURE AT 20 mA


FIGURE 11. IN-RUSH AND LED CURRENT AT V IN $=6 \mathrm{~V}$ FOR 4P12S AT 20mA/CHANNEL


FIGURE 8. QUIESCENT CURRENT vs VIN WITH PART ENABLED


FIGURE 10. $V_{\text {OUT }}$ RIPPLE VOLTAGE, $V_{\text {IN }}=12 \mathrm{~V}, 4 \mathrm{P} 12 \mathrm{~S}$ AT 20mA/CHANNEL


FIGURE 12. IN-RUSH AND LED CURRENT AT V IN $=12 \mathrm{~V}$ FOR 4P12S AT 20mA/CHANNEL

## Typical Performance Curves (Continued)



FIGURE 13. LINE REGULATION WITH VIN CHANGE FROM 6V TO 26V, $V_{\text {IN }}=12 \mathrm{~V}, 4 P 12 \mathrm{~S}$ AT 20mA/CHANNEL


FIGURE 15. LOAD REGULATION WITH I IEd CHANGE FROM 0\% TO 100\% PWM DIMMING, $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, 4P12S AT 20mA/CHANNEL


FIGURE 14. LINE REGULATION WITH VIN CHANGE FROM 26V TO 6V FOR 4P12S AT 20mA/CHANNEL


FIGURE 16. LOAD REGULATION WITH I I Led CHANGE FROM 100\% TO 0\% PWM DIMMING, $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, 4P12S AT 20mA/CHANNEL


FIGURE 17. ISL97675 SHUTS DOWN AND STOPS SWITCHING ~ 30ms AFTER EN GOES LOW

## Theory of Operation

## PWM Boost Converter

The current mode PWM boost converter produces the minimal voltage needed to enable the LED stack with the highest forward voltage drop to run at the programmed current. The ISL97675 employs current mode control boost architecture that has a fast current sense loop and a slow voltage feedback loop. Such architecture achieves a fast transient response that is essential for the notebook backlight application. The input power may instantly change when the user switches from a drained battery to a AC/DC adapter without causing any flicker in the display backlight. The ISL97675 is capable of boosting up to 45 V and typically can drive 13
( $3.2 \mathrm{~V} / 20 \mathrm{~mA}$ ) LEDs in series on each of the 4 channels.

## OVP

The Overvoltage Protection (OVP) pin has a primary function of setting the overvoltage trip level.

The ISL97675 OVP threshold is set by $\mathrm{R}_{\text {UPPER }}$ and R LOWER such that:
$\mathrm{V}_{\text {OUT_O }}$ OVP $=1.21 \mathrm{~V} \times\left(\mathrm{R}_{\text {UPPER }}+\mathrm{R}_{\text {LOWER }}\right) / R_{\text {LOWER }}$
The ISL97675 has a patent pending switching architecture that uses the OVP block for feedback monitoring, hence allowing very low PWM dimming duty cycle operation. As a result, the overvoltage trip level also limits the $V_{\text {OUT }}$ regulation range between $64 \%$ and $100 \%$ of the $\mathrm{V}_{\text {OUT_O }}$ OVP and the equation is:
Allowable $\mathrm{V}_{\text {OUT }}=64 \%$ to $100 \%$ of $\mathrm{V}_{\text {OUT_O }}$ OVP
For example, if 10 LEDs are used with the worst case $\mathrm{V}_{\text {OUT }}$ of 35 V , and $\mathrm{R}_{\text {UPPER }}$ and $\mathrm{R}_{\text {LOWER }}$ are chosen such that the OVP level is set at 40 V , then the allowed $\mathrm{V}_{\text {OUt }}$ range is between 25.6 V and 40 V . If the requirement is changed to 6 LEDs/channel for a maximum $\mathrm{V}_{\text {OUT }}$ of 21 V , then the OVP level must be reduced according to Equation 2 to accommodate the new reduced output voltage. Otherwise, the headroom control will be disturbed and the channel voltage may be higher and prevent the driver from operating properly.
The ratio of the OVP capacitors should be the inverse of the OVP resistors. For example, if $R_{\text {UPPER }} / R_{\text {LOWER }}=33 / 1$, then $C_{\text {UPPER }} / C_{\text {LOWER }}=1 / 33$. For example, if $C_{\text {UPPER }}=100 \mathrm{pF}$ then $\mathrm{C}_{\text {LOWER }}=3.3 \mathrm{nF}$.

## Enable

An EN signal is required to enable the internal regulator for normal operation. If there is no signal longer than 28ms, the device will enter shutdown.

## Power Sequence

There is no specific power sequence requirement for the ISL97675. The EN signal can be tied to $\mathrm{V}_{\text {IN }}$ but not the VDDIO as it will prevent the device from powering up.

## Current Matching and Current Accuracy

Each channel of the LED current is regulated by the current source circuit, as shown in Figure 18.

The LED peak current is set by translating the $\mathrm{R}_{\text {ISET }}$ current to the output with a scaling factor of $392 / \mathrm{R}_{\text {ISET }}$. The drain terminals of the current source MOSFETs are designed to run at $\sim 500 \mathrm{mV}$ to minimize power loss. The sources of errors for the channel-to-channel current matching are due to internal mismatches, offsets and the external $\mathrm{R}_{\text {ISET }}$ resistor. To minimize this external offset, a $1 \%$ tolerance resistor is recommended.


## FIGURE 18. SIMPLIFIED CURRENT SOURCE CIRCUIT

## Dynamic Headroom Control

The ISL97675 features a proprietary Dynamic Headroom Control circuit that detects the highest forward voltage string or effectively the lowest voltage from any of the FB1-4 pins digitally. This lowest FB voltage is used as the feedback signal for the boost regulator. Since all LED stacks are connected in parallel to the same output voltage, the other FB pins will have a higher voltage, but the regulated current source circuit on each channel will ensure that each channel has the same current. The output voltage will regulate cycle by cycle and it is always referenced to the highest forward voltage string in the architecture.

## Dimming Controls

The ISL97675 allows two ways of controlling the LED current, and therefore, the brightness. They are:

1. DC current adjustment.
2. PWM chopping of the LED current defined in step 1.

## Maximum DC Current Setting

The initial brightness should be set by choosing an appropriate value for $\mathrm{R}_{\text {ISET }}$. This should be chosen to fix the maximum possible LED current:

$$
\begin{equation*}
I_{\text {LEDmax }}=\frac{(392)}{R_{I S E T}} \tag{EQ.3}
\end{equation*}
$$

For example, if the maximum required LED current ( $\mathrm{I}_{\text {LED }(\max )}$ ) is 20 mA , rearranging Equation 3 yields Equation 4:
$R_{\text {ISET }}=(392) / 0.02=19.6 \mathrm{k} \Omega$

## PWM Control

The ISL97675 has a high speed 8-bit digitizer that decodes an incoming PWM signal and converts it into four channels of 8-bit PWM current with a phase shift function that will be described later. During the PWM On period, the LED peak current is defined by the value of $\mathrm{R}_{\text {ISET }}$ resistor, the average LED current of each channel is controlled by $\mathrm{I}_{\text {LEDmax }}$ and the PWM duty cycle in percent as:
$I_{\text {LED(ave) }}=I_{\text {LEDmax }} \times P W M$
When the PWM input $=0$, all channels are disconnected and the $I_{\text {LED }}$ is guaranteed to be $<10 \mu \mathrm{~A}$ in this state.

The PWM dimming frequency is adjusted by a resistor at the RFPWM pin, which will be described in "PWM Dimming Frequency Adjustment" on page 14.


FIGURE 19. CONVENTIONAL 4-Ch LED DRIVER WITH 10\% PWM DIMMING CHANNEL CURRENT (UPPER) AND TOTAL CURRENT (LOWER)


FIGURE 20. PHASE SHIFT 4-Ch LED DRIVER WITH 10\% PWM DIMMING CHANNEL CURRENT (UPPER) AND TOTAL CURRENT (LOWER)


FIGURE 21. CONVENTIONAL LED DRIVER PWM DIMMING CHANNEL AND TOTAL CURRENT AT 50\% DUTY CYCLE


FIGURE 22. EQUAL PHASE SHIFT LED DRIVERpwm DIMMING CHANNEL AT 50\% DUTY CYCLE

## Phase Shift Control

The ISL97675 is capable of delaying the phase of each current source. Conventional LED drivers pose the worst load transients to the boost circuit by turning on all channels simultaneously as shown in Figure 19. In contrast, the ISL97675 phase shifts each channel by turning them on once during each PWM dimming period as shown in Figure 20. At each dimming duty cycle except at $100 \%$, the sum of the phase shifted channel currents will be less than a conventional LED driver as shown in Figure 20 and 22. Equal phase means there is fixed delay between channels and such delay can be calculated as:
$\mathrm{t}_{\mathrm{D} 1}=\frac{\mathrm{t}_{\mathrm{FPWM}}}{(255)} \times\left(\frac{255}{N}\right)$
$\mathrm{t}_{\mathrm{D} 2}=\frac{\mathrm{t}_{\mathrm{FPWM}}}{255} \mathrm{x}\left((255)-(\mathrm{N}-1)\left(\frac{255}{N}\right)\right)$
where $(255 / N)$ in Equation 6 and Equation 7 can only be integer because the PWM dimming is controlled by an internal 8-bit digital counter. As a result, any decimal value of $(255 / N)$ will be discarded. For example for $N=4$, $(255 / N)=63$, thus:
$t_{D 1}=t_{\text {FPWM }} \times \frac{63}{255}$
$t_{D 2}=t_{\text {FPWM }} \times \frac{66}{255}$
where $t_{\text {FPWM }}$ is the sum of $t_{\text {ON }}$ and $t_{\text {OFF }} N$ is the number of active channels. The ISL97675 will detect the numbers of active channels automatically and is illustrated in Figure 23 for 4-channel.


FIGURE 23. 4 EQUAL PHASE CHANNELS PHASE SHIFT ILLUSTRATION

## PWM Dimming Frequency Adjustment

The dimming frequency is set by an external resistor at the RFPWM/DirectPWM pin to GND:
$F_{\text {PWM }}=\frac{6.66 \times 10^{7}}{\text { RFPWM }}$
where FPWM is the desirable PWM dimming frequency and $\mathrm{R}_{\text {FPWM }}$ is the setting resistor. Do not bias RFPWM/DirectPWM if direct PWM dimming is used, see Table 1 for clarification.
The PWM dimming frequency can be set or applied up to 30 kHz with duty cycle from $0.4 \%$ to $100 \%$. The lower limit of $0.4 \%$ is the result of 8 -bit digitizer resolution.

## Direct PWM Dimming

The ISL97675 can also operate in direct PWM dimming mode such that the output follows the input PWM signal without phase shifting. To use Direct PWM mode, users should float RFPWM/DirectPWM pin. The input PWM frequency should be limited to 30 kHz and the minimum duty cycle be calculated by the following Equation 10:

Min Duty Cycle $=350 \mathrm{~ns} \times$ Input PWM Frequency
(EQ.10)

For example, for a 200 Hz input PWM frequency, the minimum duty cycle is:

Min DC $=350 \mathrm{~ns} \times 200 \mathrm{~Hz}=0.007 \%$
Table 1 shows the PWM Dimming with Phase Shift and Direct PWM Dimming configurations.

TABLE 1.

| RFWM/ <br> DIRECTPWM | FUNCTION | PHASE <br> SHIFT | Dimming <br> Resolution |
| :--- | :--- | :---: | :---: |
| Connects with <br> Resistor | PWM Dimming <br> with frequency <br> adjust | Yes | 8-bit |
| Floating | DirectPWM <br> without <br> frequency adjust | No | N/A |

## Switching Frequency

When the FSW/PhaseShift pin is biased from VDDIO with a resistor divider $\mathrm{R}_{\text {UPPER }}$ and $\mathrm{R}_{\text {LOWER }}$, the switching frequency and phase shift function will change according to the following FSW/PhaseShift levels shown in Table 2 with the recommended $R_{\text {UPPER }}$ and $R_{\text {LOWER }}$ values.

TABLE 2.

| FSW/PHASE <br> SHIFT LEVEL | SWITCHING <br> FREQUENCY | PHASE <br> SHIFT | RPPER <br> $(\mathbf{k} \boldsymbol{\Omega})$ | $\mathbf{R}_{\text {LOWER }}$ <br> $(\mathbf{k} \boldsymbol{\Omega})$ |
| :--- | :---: | :---: | :---: | :---: |
| $0 \sim 0.25$ * VDDIO | 600 kHz | Yes | Open | 0 |
| 0.25 * VDDIO $\sim 0.5 *$ VDDIO | 600 kHz | No | 150 | 100 |
| $0.5 *$ VDDIO $\sim 0.75 *$ VDDIO | 1.2 MHz | No | 100 | 150 |
| 0.75 * VDDIO $\sim$ VDDIO | 1.2 MHz | Yes | 0 | Open |

## Inrush Control and Soft-Start

The ISL97675 has separate built-in independent inrush control and soft-start functions. The inrush control function is built around the short circuit protection FET, and is only available in applications which include this device.

After an initial delay from the point where the master Fault Protection FET is turned on, it is assumed that inrush has completed. At this point, the boost regulator will begin to switch and the current in the inductor will ramp-up. The current in the boost power switch is monitored and the switching is terminated in any cycle where the current exceeds the current limit. The ISL97675 includes a soft-start feature where this current limit starts at a low value ( 275 mA ). This is stepped up to the final 2.2 A current limit in 7 further steps of 275 mA . These steps will happen over at least 8 ms , and will be extended at low LED PWM frequencies if the LED duty cycle is low. This allows the output capacitor to be charged to the required value at a low current limit and prevents high input current for systems that have only a low to medium output current requirement.

For systems with no master fault protection FET, the inrush current will flow towards $\mathrm{C}_{\text {OUT }}$ when $\mathrm{V}_{\text {IN }}$ is applied and it is determined by the ramp rate of $\mathrm{V}_{\text {IN }}$ and the values of COUT and boost inductor, $L$.

## Fault Protection and Monitoring

The ISL97675 features extensive protection functions to cover all the perceivable failure conditions. The failure mode of an LED can be either open circuit or as a short. The behavior of an open circuited LED can additionally take the form of either infinite resistance or, for some LEDs, a zener diode, which is integrated into the device in parallel with the now opened LED.

For basic LEDs (which do not have built-in zener diodes), an open circuit failure of an LED will only result in the loss of one channel of LEDs without affecting other channels. Similarly, a LED short circuit condition which causes the FB voltage to rise to $\sim 4 \mathrm{~V}$, will result in that channel turning off. This does not affect any other channels.
Due to the lag in boost response to any load change at its output, certain transient events (such as LED current steps or significant step changes in LED duty cycle) can transiently look like LED fault modes. The ISL97675 uses feedback from the LEDs to determine when it is in a stable operating region and prevents apparent faults during these transient events from allowing any of the LED stacks to fault out. See Table 3 for more details.
A fault condition that results in high input current due to a short on $\mathrm{V}_{\text {OUT }}$ with master fault protection switch will result in a shutdown of all output channels. The control device logic will remain functional.

## Short Circuit Protection (SCP)

The short circuit detection circuit monitors the voltage on each channel and disables faulty channels which are detected above the programmed short circuit threshold. When an LED becomes shorted, the action taken is described in Table 3. The short circuit threshold is 4V.

## Open Circuit Protection (OCP)

When one of the LEDs becomes open circuit, it can behave as either an infinite resistance or a gradually increasing finite resistance. The ISL97675 monitors the current in each channel such that any string which reaches the intended output current is considered "good". Should the current subsequently fall below the target, the channel will be considered an "open circuit". Furthermore, should the boost output of the ISL97675 reach the OVP limit or should the lower over-temperature threshold be reached, all channels which are not "good" will immediately be considered as "open circuit". Detection of an "open circuit" channel will result in a time-out before disabling of the affected channel. This time-out is run when the device is above the lower over-temperature threshold in an attempt to prevent the upper over-temperature trip point from being reached.
Some users employ special types of LEDs that have zener diode structure in parallel with the LED for ESD enhancement, thus enabling open circuit operation.

When this type of LED goes open circuit, the effect is as if the LED forward voltage has increased, but no light is emitted. Any affected string will not be disabled, unless the failure results in the boost OVP limit being reached, allowing all other LEDs in the string to remain
functional. Care should be taken in this case that the boost OVP limit and SCP limit are set properly, to make sure that multiple failures on one string do not cause all other good channels to be faulted out. This is due to the increased forward voltage of the faulty channel making all other channels look as if they have LED shorts. See Table 3 for details for responses to fault conditions.

## Overvoltage Protection (OVP)

The integrated OVP circuit monitors the output voltage and keeps the voltage at a safe level. The OVP threshold is set as:

OVP $=1.21 \mathrm{~V} \times\left(\mathrm{R}_{\text {UPPER }}+\mathrm{R}_{\text {LOWER }}\right) / \mathrm{R}_{\text {LOWER }}$
These resistors should be large to minimize the power loss. For example, a $1 \mathrm{M} \Omega \mathrm{R}_{\text {UPPER }}$ and $30 \mathrm{k} \Omega \mathrm{R}_{\text {LOWER }}$ sets OVP to 41.2V. Large OVP resistors also allow COUT discharges slowly during the PWM Off time. Parallel capacitors should also be placed across the OVP resistors such that $R_{\text {UPPER }} / R_{\text {LOWER }}=C_{\text {LOWER }} / C_{\text {UPPER }}$. Using a CUPPER value of at least 30 pF is recommended. These capacitors reduce the AC impedance of the OVP node, which is important when using high value resistors.

## Undervoltage Lockout

If the input voltage falls below the UVLO level of 3.1 V , the device will stop switching and be reset. Operation will restart once the input voltage is back in the normal operating range.

## Master Fault Protection

During normal switching operation, the current through the internal boost power FET is monitored. If the input current exceeds the current limit due to output shorted to ground or excessive loading, the internal switch will be turned off. This monitoring happens on a cycle by cycle basis in a self protecting way.
Additionally, the ISL97675 monitors the voltage at the LX and OVP pins. At start-up, a fixed current is injected out of the LX pins and into the output capacitor. The device will not start up unless the voltage at LX exceeds 1.2 V . The OVP pin is also monitored such that if it rises above and subsequently falls below 20\% of the target OVP level, the input protection FET will be switched off.

## Over-Temperature Protection (OTP)

The ISL97675 includes two over-temperature thresholds. The lower threshold is set to $+130^{\circ} \mathrm{C}$. When this threshold is reached, any channel which is outputting current at a level below the regulation target will be treated as "open circuit" and disabled after a time-out period. The intention of the lower threshold is to allow bad channels to be isolated and disabled before they cause enough power dissipation (as a result of other
channels having large voltages across them) to hit the upper temperature threshold.

The upper threshold is set to $+150^{\circ} \mathrm{C}$. Each time this is reached, the boost will stop switching and the output current sources will be switched off.

For the extensive fault protection conditions, please refer to Figure 24 and Table 3 for details.


FIGURE 24. SIMPLIFIED FAULT PROTECTIONS

TABLE 3. PROTECTIONS TABLE

| CASE | FAILURE MODE | DETECTION MODE | FAILED CHANNEL ACTION | GOOD CHANNELS ACTION | $\begin{gathered} \mathbf{V}_{\text {OUT }} \\ \text { REGULATED } \\ \text { BY } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FB1 Short Circuit | Upper Over-Temperature Protection limit (OTP) not triggered and FB1 < 4V | FB1 ON and burns power. | FB2 through FB4 Normal | Highest VF of FB2 through FB4 |
| 2 | FB1 Short Circuit | Upper OTP triggered but VFB1 < 4V | All channels go off until chip cooled and then comes back on with current reduced to 76\%. Subsequent OTP triggers will reduce $\mathrm{I}_{\text {OUT }}$ further. | Same as FB1 | Highest VF of FB2 through FB4 |
| 3 | FB1 Short Circuit | Upper OTP not triggered but FB1 > 4V | FB1 disabled after 6 PWM cycle timeout. | FB2 through FB4 Normal | Highest VF of FB2 through FB4 |
| 4 | FB1 Open Circuit with infinite resistance | Upper OTP not triggered and FB1 < 4V | Vout will ramp to OVP. FB1 will time-out after 6 PWM cycles and switch off. $\mathrm{V}_{\text {OUT }}$ will drop to normal level. | FB2 through FB4 Normal | Highest VF of FB2 through FB4 |

TABLE 3. PROTECTIONS TABLE (Continued)

| CASE | FAILURE MODE | DETECTION MODE | FAILED CHANNEL ACTION | GOOD CHANNELS ACTION | $\begin{gathered} \text { VOUT } \\ \text { REGULATED } \\ \text { BY } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | FB1 LED Open Circuit but has paralleled Zener | Upper OTP not triggered and FB1 < 4V | FB1 remains ON and has highest VF, thus $\mathrm{V}_{\text {OUT }}$ increases. | FB2 through FB4 ON, Q2 through Q4 burn power | VF of FB1 |
| 6 | FB1 LED Open Circuit but has paralleled Zener | Upper OTP triggered but $\text { FB1 }<4 \mathrm{~V}$ | All channels go off until chip cooled and then comes back on with current reduced to $76 \%$. Subsequent OTP triggers will reduce $\mathrm{I}_{\text {OUT }}$ further | Same as FB1 | VF of FB1 |
| 7 | FB1 LED Open Circuit but has paralleled Zener | Upper OTP not triggered but FBx $>4 V$ | FB1 remains ON and has highest VF, thus $V_{\text {OUT }}$ increases. | $\mathrm{V}_{\text {OUT }}$ increases, then FB-X switches OFF after 6 PWM cycles. This is an unwanted shut off and can be prevented by setting OVP at an appropriate level. | VF of FB1 |
| 8 | Channel-to-Channel $\Delta \mathrm{VF}$ too high | Lower OTP triggered but $\mathrm{FBx}<4 \mathrm{~V}$ | Any channel at below the target current will fault out after 6 PWM cycles. <br> Remaining channels driven with normal current. |  | Highest VF of FB1 through FB4 |
| 9 | Channel-to-Channel $\Delta V F$ too high | Upper OTP triggered but FBx $<4 \mathrm{~V}$ | All channels go off until chip cooled and then comes back on with current reduced to $76 \%$. Subsequent OTP triggers will reduce $\mathrm{I}_{\text {OUT }}$ further |  | Highest VF of FB1 through FB4 |
| 10 | Output LED stack voltage too high | $\mathrm{V}_{\text {OUT }}>\mathrm{VOVP}$ | Any channel that is below the target current will timeout after 6 PWM cycles, and $\mathrm{V}_{\text {OUT }}$ will return to the normal regulation voltage required for other channels. |  | Highest VF of FB1 through FB4 |
| 11 | $V_{\text {OUT }} / L X$ shorted to GND at start-up or $\mathrm{V}_{\text {OUT }}$ shorted in operation | LX current and timing are monitored. <br> OVP pins monitored for excursions below $20 \%$ of OVP threshold. | The chip is permanently shutdown 31ms after power-up if $\mathrm{V}_{\mathrm{OUT}} / \mathrm{Lx}$ is shorted to GND. |  |  |

## Components Selections

According to the inductor Voltage-Second Balance principle, the change of inductor current during the switching regulator On-time is equal to the change of inductor current during the switching regulator Off-time. Since the voltage across an inductor is:
$\mathrm{V}_{\mathrm{L}}=\mathrm{L} \times \Delta \mathrm{I}_{\mathrm{L}} / \Delta \mathrm{t}$
and $\Delta \mathrm{I}_{\mathrm{L}} @ \mathrm{~T}_{\mathrm{ON}}=\Delta \mathrm{I}_{\mathrm{L}} @ \mathrm{~T}_{\mathrm{OFF}}$, therefore:

$$
\begin{equation*}
\left(V_{1}-0\right) / L \times D \times t_{S}=\left(V_{O}-V_{D}-V_{1}\right) / L \times(1-D) \times t_{S} \tag{EQ.14}
\end{equation*}
$$

where $D$ is the switching duty cycle defined by the turn-on time over the switching period. $\mathrm{V}_{\mathrm{D}}$ is Schottky diode forward voltage which can be neglected for approximation.

Rearranging the terms without accounting for $\mathrm{V}_{\mathrm{D}}$ gives the boost ratio and duty cycle respectively as:
$V_{O} / V_{1}=1 /(1-D)$
$D=\left(V_{O}-V_{1}\right) / V_{O}$

## Input Capacitor

Switching regulators require input capacitors to deliver peak charging current and to reduce the impedance of the input supply. This reduces interaction between the regulator and input supply, thereby improving system stability. The high switching frequency of the loop causes almost all ripple current to flow in the input capacitor, which must be rated accordingly.
A capacitor with low internal series resistance should be chosen to minimize heating effects and improve system efficiency, such as X5R or X7R ceramic capacitors, which offer small size and a lower value of temperature and voltage coefficient compared to other ceramic capacitors.

In boost mode, input current flows continuously into the inductor; AC ripple component is only proportional to the rate of the inductor charging, thus, smaller value input capacitors may be used. It is recommended that an input capacitor of at least $10 \mu \mathrm{~F}$ be used. Ensure the voltage rating of the input capacitor is suitable to handle the full supply range.

## Inductor

The selection of the inductor should be based on its maximum current ( $\mathrm{I}_{\text {SAT }}$ ) characteristics, power dissipation (DCR), EMI susceptibility (shielded vs unshielded), and size. Inductor type and value influence many key parameters, including ripple current, current limit, efficiency, transient performance and stability.
The inductor's maximum current capability must be large enough to handle the peak current at the worst case condition. If an inductor core is chosen with a lower current rating, saturation in the core will cause the effective inductor value to fall, leading to an increase in peak to average current level, poor efficiency and overheating in the core. The series resistance, DCR, within the inductor causes conduction loss and heat dissipation. A shielded inductor is usually more suitable for EMI susceptible applications, such as LED backlighting.
The peak current can be derived from the voltage across the inductor during the off period, as expressed in Equation 17:

$$
\begin{equation*}
\mathrm{I}_{\text {peak }}=\left(\mathrm{V}_{\mathrm{O}} \times \mathrm{I}_{\mathrm{O}}\right) /\left(85 \% \times \mathrm{V}_{1}\right)+1 / 2\left[\mathrm{~V}_{\mathrm{I}} \times\left(\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{1}\right) /\left(\mathrm{L} \times \mathrm{V}_{\mathrm{O}} \times \mathrm{f}_{\mathrm{sw}}\right)\right] \tag{EQ.17}
\end{equation*}
$$

The choice of $85 \%$ is just an average term for the efficiency approximation. The first term is the average current, which is inversely proportional to the input voltage. The second term is the inductor current change, which is inversely proportional to $L$ and $f_{\text {Sw }}$. As a result, for a given switching frequency, minimum input voltage must be used to calculate the input/inductor current as shown in Equation 17. Fora given inductor size, the larger the inductance value, the higher the series resistance because of the extra number of turns required, thus, higher conductive losses. The ISL97675 current limit should be less than the inductor saturation current.

## Output Capacitors

The output capacitor acts to smooth the output voltage and supplies load current directly during the conduction phase of the power switch. Output ripple voltage consists of the discharge of the output capacitor during the FET ton period and the voltage drop due to load current flowing through the ESR of the output capacitor. The ripple voltage is shown in Equation 18:
$\Delta \mathrm{V}_{\mathrm{CO}}=\left(\mathrm{I}_{\mathrm{O}} / \mathrm{C}_{\mathrm{O}} \times \mathrm{D} / \mathrm{f}_{\mathrm{S}}\right)+\left(\left(\mathrm{I}_{\mathrm{O}} \times \mathrm{ESR}\right)\right.$
Equation 18 shows the importance of using a low ESR output capacitor for minimizing output ripple.
The choice of X7R over Y5V ceramic capacitors is highly recommended because the former capacitor is less sensitive to capacitance change over voltage as shown in Figure 25. Y5V's absolute capacitance can be reduced to $10 \% \sim 20 \%$ of its rated capacitance at the maximum voltage. In any case, Y5V type of ceramic capacitor should be avoided.

Here are some recommendations for various applications:
For 20 mA applications with $\mathrm{V}_{\mathrm{IN}}>7 \mathrm{~V}, 1 \times 4.7 \mu \mathrm{~F}$ (X7R type) is sufficient.
For 20 mA applications with $\mathrm{V}_{\mathrm{IN}}<7 \mathrm{~V}, 2 \times 4.7 \mu \mathrm{~F}$ (X7R type) is required in some configurations.


FIGURE 25. X7R AND V5Y TYPES CERAMIC CAPACITORS

## Channel Capacitor

It is recommended to use at least 1.5 nF capacitors from CH pins to $\mathrm{V}_{\text {OUT }}$. Larger capacitors will reduce LED current ripple at boost frequency, but will degrade transient performance at high PWM frequencies. The best value is dependant on PCB layout. Up to 4.7 nF is sufficient for most configurations.

## Output Ripple

$\Delta \mathrm{V}_{\mathrm{Co}}$, can be reduced by increasing Co or $\mathrm{f}_{\mathrm{SW}}$, or using small ESR capacitors as shown in Equation 18. In general, Ceramic capacitors are the best choice for output capacitors in small to medium sized LCD backlight applications due to their cost, form factor, and low ESR.

A larger output capacitor will also ease the driver response during PWM dimming off period due to the longer sample and hold effect of the output drooping. The driver does not need to boost as much on the next on period which minimizes transient current. The output capacitor is also needed for compensation, and, in general one to two $4.7 \mu \mathrm{~F} / 50 \mathrm{~V}$ ceramic capacitors are needed for netbook or notebook display backlight applications.

## Schottky Diode

A high speed rectifier diode is necessary to prevent excessive voltage overshoot, especially in the boost configuration. Low forward voltage and reverse leakage current will minimize losses, making Schottky diodes the preferred choice. Although the Schottky diode turns on only during the boost switch off period, it carries the same peak current as the inductor, therefore, a suitable current rated Schottky diode must be used.

## Applications

## High Current Applications

Each channel of the ISL97675 can support up to 40 mA . For applications that need higher current, multiple channels can be grouped to achieve the desirable current. For example, the cathode of the last LED can be connected to FB1 to FB2, this configuration can be treated as a single string with 80 mA current driving capability.


FIGURE 26. GROUPING MULTIPLE CHANNELS FOR HIGH CURRENT APPLICATIONS

## Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

| DATE | REVISION |  |
| :---: | :---: | :--- |
| $5 / 19 / 10$ | FN7630.0 | Initial Release. |

## Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL97675

To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff
FITs are available from our website at http://rel.intersil.com/reports/search.php

For additional products, see www.intersil.com/product tree
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

## Package Outline Drawing

## L20.4x4C

20 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE Rev 0, 11/06


NOTES:

1. Dimensions are in millimeters.

Dimensions in ( ) for Reference Only.
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3. Unless otherwise specified, tolerance : Decimal $\pm 0.05$
4. Dimension $b$ applies to the metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip.
5. Tiebar shown (if present) is a non-functional feature.
6. The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 indentifier may be either a mold or mark feature.


[^0]:    Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

