LP5521

Programmable Three Channel LED Driver

General Description

The LP5521 is a three channel LED driver designed to produce variety of lighting effects for mobile devices. High efficiency charge pump enables LED driving over full Li-lon battery voltage range. The device has a program memory for creating variety of lighting sequences. When program memory has been loaded, LP5521 can operate independently without processor control.
LP5521 maintains excellent efficiency over a wide operating range by automatically selecting proper charge pump gain based on LED forward voltage requirements. LP5521 is able to automatically enter power-save mode, when LED outputs are not active and thus lowering current consumption.
Three independent LED channels have accurate programmable current sources and PWM control. Each channel has program memory for creating desired lighting sequences with PWM control.
LP5521 has a flexible digital interface. Trigger I/O and 32 kHz clock input allow synchronization between multiple devices. Interrupt output can be used to notify processor, when LED sequence has ended. LP5521 has four pin selectable ${ }^{2} \mathrm{C}$ addresses. This allows connecting up to four parallel devices in one ${ }^{2} \mathrm{C}$ bus. GPO and INT pins can be used as a digital control pin for other devices.
LP5521 requires only four small and low cost ceramic capacitors.
LP5521 is available in tiny $2.1 \times 1.7 \times 0.6 \mathrm{~mm}$ microSMD-20 package and in $4.0 \times 5.0 \times 0.8 \mathrm{~mm}$ bumped LLP-24 package.
Comprehensive application tools are available, including command compiler for easy LED sequence programming.

Features

- Adaptive charge pump with 1 x and 1.5 x gain provides up to 95% LED drive efficiency
- Charge pump with soft start and overcurrent/short circuit protection
- Low input ripple and EMI
- Very small solution size, no inductor or resistors required
- 200 nA typical shutdown current
- Automatic power save mode
- I2C compatible interface
- Independently programmable constant current outputs with 8-bit current setting and 8-bit PWM control
- Typical LED output saturation voltage 50 mV and current matching 1%
- Three program execution engines with flexible instruction set
- Autonomous operation without external control
- Large SRAM program memory
- Two general purpose digital outputs
- microSMD-20 package, 0.4 mm pitch
- Bumped LLP-24 package, 0.5 mm pitch

Applications

- Fun / indicator lights
- LCD sub-display backlighting
- Keypad RGB backlighting and phone cosmetics
- Vibra, speakers, waveform generator

Typical Application

Connection Diagrams and Package Mark Information

Thin microSMD-20 Package ($2.1 \times 1.7 \times 0.6 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch) NS Package Number TMD20ECA

Package Mark

$\mathrm{XY}=2$ Digit Date Code
$\mathrm{TT}=$ Die Traceability
$5521=$ Product Identification

Package Mark - Top View

Connection Diagrams and Package Mark Information

Bumped LLP-24 Package (5 x $4 \times 0.8 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch)

 NS Package Number YQA24A

> U = Fab
> Z = Assembly
> XY = 2 Digit Date Code
> TT $=$ Die Traceability
> L5521YQ $=$ Product Identification

Ordering Information

Order Number	Package	Package Marking	Supplied As	Spec/Flow
LP5521TM	μ SMD	5521	250 units, Tape-and-Reel	NoPb
LP5521TM X	μ SMD	5521	3000 units, Tape-and-Reel	NoPb
LP5521YQ	bumped LLP	L5521YQ	1000 units, Tape-and-Reel	NoPb
LP5521YQ X	bumped LLP	L5521YQ	4500 units, Tape-and-Reel	NoPb

Pin Descriptions LP5521TM

Pin \#	Name	Type	Description
1A	B	A	Current source output
1B	G	A	Current source output
1C	R	A	Current source output
1D	SCL	I	$1^{2} \mathrm{C}$ Serial interface clock input
1E	SDA	I/OD	${ }^{12} \mathrm{C}$ Serial interface data input/output
2A	VOUT	A	Charge pump output
2B	ADDR_SEL1	I	${ }^{2} \mathrm{C}$ address select input
2C	ADDR_SELO	I	${ }^{2} \mathrm{C}$ address select input
2D	GPO	0	General purpose output
2E	EN	I	Chip enable
3A	CFLY2N	A	Negative terminal of charge pump fly capacitor 2
3B	CFLY1N	A	Negative terminal of charge pump fly capacitor 1
3C	GND	G	Ground
3D	CLK_32K	I	32 kHz clock input
3E	INT	OD/O	Interrupt output / General Purpose Output
4A	CFLY2P	A	Positive terminal of charge pump fly capacitor 2
4B	CFLY1P	A	Positive terminal of charge pump fly capacitor 1
4C	VDD	P	Power supply pin
4D	GND	G	Ground
4E	TRIG	I/OD	Trigger input/output

A: Analog Pin, G: Ground Pin, P: Power Pin, I: Input Pin, I/O: Input/Output Pin, O: Output Pin, OD: Open Drain Pin

Pin Descriptions LP5521YQ

Pin \#	Name	Type	Description
1	CFLY2P	A	Positive terminal of charge pump fly capacitor 2
2	CFLY1P	A	Positive terminal of charge pump fly capacitor 1
3	VDD	P	Power supply pin
4	GND	G	Ground
5	CLK_32K	I	32 kHz clock input
6	INT	OD/O	Interrupt output / General purpose output
7	TRIG	I/OD	Trigger input/output
8		N/C	
9		N/C	
10		N/C	
11	N/C		
12	N/C		
13	SDA	I/OD	I2C Serial interface data input/output
14	EN	I	Chip enable
15	SCL	I	I2C Serial interface clock input
16	GPO	O	General purpose output
17	R	A	Current source output
18	G	A	Current source output
19	B	A	Current source output
20	ADDR_SELO	I	I2C address select input
21	ADDR_SEL1	I	I2C address select input
22	VOUT	A	Charge pump output
23	CFLY2N	A	Negative terminal of charge pump fly capacitor 2
24	CFLY1N	A	Negative terminal of charge pump fly capacitor 1
10			

A: Analog Pin, G: Ground Pin, P: Power Pin, I: Input Pin, I/O: Input/Output Pin, O: Output Pin, OD: Open Drain Pin, N/C: Not Connected

Absolute Maximum Ratings
 (Notes 1, 2)
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

$\mathrm{V}\left(\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {OUT }}, \mathrm{R}, \mathrm{G}, \mathrm{B}\right)$	-0.3 V to +6.0 V
Voltage on Logic Pins	$\begin{array}{r} -0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \\ \text { with } 6.0 \mathrm{~V} \text { max } \end{array}$
Continuous Power Dissipation (Note 3)	Internally Limited
Junction Temperature ($\mathrm{T}_{\mathrm{J} \text {-MAX }}$)	$125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering)	(Note 4)
ESD Rating (Note 5)	
Human Body Model:	2 kV
Machine Model:	200V

Operating Ratings (Notes 1,2)

$V_{\text {D }}$	2.7 to 5.5 V
Recommended Charge Pump	
Load Current I ${ }_{\text {OUT }}$	0 to 100 mA
Junction Temperature (T_{J}) Range	$-30^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature (T_{A}) Range (Note 6)	$-30^{\circ} \mathrm{C}$ to +85

Thermal Properties

Junction-to-Ambient Thermal
Resistance ($\theta_{\text {JA }}$), TMD20 Package
(Note 7)
$50-90^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient Thermal
Resistance (θ_{JA}), YQA24A Package (Note 7)

Electrical Characteristics (Notes 2, 8)

Limits in standard typeface are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$. Limits in boldface type apply over the operating ambient temperature range $\left(-30^{\circ} \mathrm{C}\right.$ $<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$). Unless otherwise noted, specifications apply to the LP5521 Block Diagram with: $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{OUT}}=\mathrm{C}_{\text {IN }}=$ $1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{FLY} 1}=\mathrm{C}_{\text {FLY2 }}=0.47 \mu \mathrm{~F}$. (Note 9).

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{I}_{\text {VDD }}$	Standby supply current	EN = 0 (pin), CHIP_EN = 0 (bit), external 32 kHz clock running or not running		0.2	2	$\mu \mathrm{A}$
		EN = 1 (pin), CHIP_EN = 0 (bit), external 32 kHz clock not running		1.0		$\mu \mathrm{A}$
		EN = 1 (pin), CHIP_EN = 0 (bit), external 32 kHz clock running		1.4		$\mu \mathrm{A}$
	Normal mode supply current	Charge pump and LED drivers disabled		0.25		mA
		Charge pump in 1x mode, no load, LED drivers disabled		0.70		mA
		Charge pump in 1.5 x mode, no load, LED drivers disabled		1.5		mA
		Charge pump in 1x mode, no load, LED drivers enabled		1.2		mA
	Powersave mode supply current	External 32 kHz clock running		10		$\mu \mathrm{A}$
		Internal oscillator running		0.25		mA
$\mathrm{f}_{\text {OSc }}$	Internal oscillator frequency accuracy		$\begin{aligned} & \hline-4 \\ & -7 \end{aligned}$		4 7	\%

Charge Pump Electrical Characteristics

(Note 10)

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{R}_{\text {OUT }}$	Charge pump output resistance	Gain $=1.5 \mathrm{x}$		3.5		Ω
		Gain $=1 \mathrm{x}$		1		Ω
$\mathrm{f}_{\mathrm{S} w}$	Switching frequency		-7	1.25	7	$\begin{gathered} \mathrm{MHz} \\ \% \end{gathered}$
$\mathrm{I}_{\text {GND }}$	Ground current	Gain $=1.5 \mathrm{x}$		1.2		mA
		Gain $=1 \mathrm{x}$		0.5		mA
t_{ON}	$\mathrm{V}_{\text {OUT }}$ turn-on time from charge pump off to $1.5 x$ mode	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \text { CHIP_EN }=\mathrm{H} \\ & \mathrm{I}_{\mathrm{OUT}}=60 \mathrm{~mA} \end{aligned}$		100		$\mu \mathrm{s}$
$\mathrm{V}_{\text {OUT }}$	Charge pump output voltage	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$, no load, Gain $=1.5 \mathrm{x}$		4.55		V

LED Driver Electrical Characteristics (R, G, B Outputs)

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{I}_{\text {LEAKAGE }}$	R, G, B pin leakage current			0.1	1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {MAX }}$	Maximum Source Current	Outputs R, G, B		25.5		mA
Iout	Accuracy of output current	Output current set to $17.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.6 \mathrm{~V}$	$\begin{aligned} & \hline-4 \\ & -5 \end{aligned}$		$\begin{aligned} & 4 \\ & 5 \end{aligned}$	\%
$\mathrm{I}_{\text {MATCH }}$	Matching (Note 11)	$\mathrm{l}_{\text {OUT }}=17.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.6 \mathrm{~V}$		1	2	\%
$\mathrm{f}_{\text {LED }}$	LED PWM switching frequency	PWM_HF = 1 Frequency defined by internal oscillator		558		Hz
		PWM_HF = 0 Frequency defined by 32 kHz clock (internal or external)		256		Hz
$\mathrm{V}_{\text {SAT }}$	Saturation voltage (Note 12)	$\mathrm{l}_{\text {OUT }}$ set to 17.5 mA		50	100	mV

Logic Interface Characteristics

$\left(\mathrm{V}(\mathrm{EN})=1.65 \mathrm{~V} . . . \mathrm{V}_{\mathrm{DD}}\right.$ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
LOGIC INPUT EN						
$\mathrm{V}_{\text {IL }}$	Input Low Level				0.5	V
V_{IH}	Input High Level		1.2			V
${ }_{1}$	Logic Input Current		-1.0		1.0	$\mu \mathrm{A}$
$\mathrm{t}_{\text {DELAY }}$	Input delay			2		$\mu \mathrm{s}$

LOGIC INPUT SCL, SDA, TRIG, CLK_32K

V_{IL}	Input Low Level				$\mathbf{0 . 2 x V (E N)}$	V
V_{IH}	Input High Level		$\mathbf{0 . 8 x V}(\mathrm{EN})$			V
I_{I}	Input Current		$\mathbf{- 1 . 0}$		$\mathbf{1 . 0}$	$\mu \mathrm{A}$
$\mathrm{f}_{\mathrm{CLK} _32 \mathrm{~K}}$	Clock frequency			32		kHz
$\mathrm{f}_{\mathrm{SCL}}$	Clock frequency				$\mathbf{4 0 0}$	kHz

LOGIC OUTPUT SDA, TRIG, INT

V_{OL}	Output Low Level	$\mathrm{I}_{\text {OUT }}=3 \mathrm{~mA}$ (pull-up current)		0.3	0.5	V
${ }_{\text {L }}$	Output Leakage Current				1.0	$\mu \mathrm{A}$
LOGIC INPUT ADDR_SELO, ADDR_SEL1						
$\mathrm{V}_{\text {IL }}$	Input Low Level				$0.2 \mathrm{xV}_{\text {DD }}$	V
V_{IH}	Input High Level		0.8 xV DD			V
I	Input Current		-1.0		1.0	$\mu \mathrm{A}$

LOGIC OUTPUT GPO, INT (in GPO state)

V_{OL}	Output Low Level	$\mathrm{I}_{\mathrm{OUT}}=3 \mathrm{~mA}$		0.3	$\mathbf{0 . 5}$	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Level	$\mathrm{I}_{\mathrm{OUT}}=-2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{DD}}-\mathbf{0 . 5}$	$\mathrm{V}_{\mathrm{DD}}-0.3$		V
I_{L}	Output leakage current				$\mathbf{1 . 0}$	$\mu \mathrm{A}$

I2C Timing Parameters (SDA, SCL)
(Note 13)

Symbol	Parameter	Limit		Units
		Min	Max	
$\mathrm{f}_{\mathrm{SCL}}$	Clock Frequency		400	kHz
1	Hold Time (repeated) START Condition	0.6		$\mu \mathrm{s}$
2	Clock Low Time	1.3		$\mu \mathrm{s}$
3	Clock High Time	600		ns
4	Setup Time for a Repeated START Condition	600		ns
5	Data Hold Time	50		ns
6	Data Setup Time	100		ns
7	Rise Time of SDA and SCL	$20+0.1 \mathrm{C}_{\mathrm{b}}$	300	ns
8	Fall Time of SDA and SCL	$15+0.1 C_{b}$	300	ns
9	Set-up Time for STOP condition	600		ns
10	Bus Free Time between a STOP and a START Condition	1.3		$\mu \mathrm{s}$
C_{b}	Capacitive Load for Each Bus Line	10	200	pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.
Note 2: All voltages are with respect to the potential at the GND pins.
Note 3: Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at $\mathrm{T}_{J}=150^{\circ} \mathrm{C}$ (typ.) and disengages at T_{J} $=130^{\circ} \mathrm{C}$ (typ.).
Note 4: For detailed soldering specifications and information, please refer to National Semiconductor Application Note AN1112 : Micro SMD Wafer Level Chip Scale Package or AN1187 : Leadless Leadframe Package (LLP).
Note 5: The Human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin. MIL-STD-883 3015.7
Note 6: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature ($T_{A-M A X}$) is dependent on the maximum operating junction temperature ($T_{J-M A X-O P}=125^{\circ} \mathrm{C}$), the maximum power dissipation of the device in the application ($\mathrm{P}_{\mathrm{D}-\mathrm{MAX}}$), and the junction-to ambient thermal resistance of the part/package in the application (θ_{JA}), as given by the following equation: $T_{A-M A X}=T_{J-M A X-O P}-\left(\theta_{J A} \times P_{D-M A X}\right)$.
Note 7: Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.
Note 8: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm.
Note 9: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.
Note 10: Input, output, and fly capacitors should be of the type X5R or X7R low ESR ceramic capacitor.
Note 11: Matching is the maximum difference from the average of the three output's currents.
Note 12: Saturation voltage is defined as the voltage when the LED current has dropped 10% from the value measured at $\mathrm{V}_{\text {OUT }}-1 \mathrm{~V}$.
Note 13: Guaranteed by design.

Typical Performance Characteristics
Unless otherwise specified: $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$

20186221

20186223
Charge Pump Efficiency vs. Load Current

20186208

LED Current vs. Output Pin Headroom Voltage

20186222

20186207
Charge Pump Efficiency vs. Input Voltage 1.5x Mode

20186210

Charge Pump Automatic Gain Change Hysteresis

20186212

Charge Pump Load Transient Response in 1.5x Mode (0 to $\mathbf{2 5 . 5} \mathbf{~ m A}$)

TIME ($500 \mu \mathrm{~s} / \mathrm{DIV}$)
20186214

Charge Pump Output Voltage vs. Input Voltage Automatic Gain Change from 1x to $1.5 x$

20186211
Charge Pump Startup in 1.5x Mode

TIME ($100 \mu \mathrm{~s} / \mathrm{DIV}$)

Charge Pump Line Transient Response 1.5 x Mode ($\mathrm{V}_{\text {IN }} 3.5 \mathrm{~V}$ to 4.0 V)

TIME ($200 \mu \mathrm{~s} / \mathrm{DIV}$)

Charge Pump Automatic Gain Change (LED $\mathrm{V}_{\mathrm{F}}=3.6 \mathrm{~V}$)

TIME ($5 \mathrm{~ms} / \mathrm{DIV}$)

Modes of Operation

RESET: In the RESET mode all the internal registers are reset to the default values. Reset is done always if Reset Register (ODH) is written FFH or internal Power On Reset is activated. Power On Reset (POR) will activate when supply voltage is connected or when the supply voltage V_{DD} falls below 1.5 V . Once V_{DD} rises above 1.5 V , POR will inactivate and the chip will continue to the STANDBY mode. CHIP_EN control bit is low after POR by default.
STANDBY: The STANDBY mode is entered if the register bit CHIP_EN or EN pin is LOW and Reset is not active. This is the low power consumption mode, when all circuit functions are disabled. Registers can be written in this mode if EN pin is high. Control bits are effective after start up.
STARTUP: When CHIP_EN bit is written high and EN pin is high, the INTERNAL STARTUP SEQUENCE powers up all the needed internal blocks ($\mathrm{V}_{\mathrm{REF}}$, Bias, Oscillator etc.). Startup delay is $500 \mu \mathrm{~s}$. If the chip temperature rises too high, the Thermal Shutdown (TSD) disables the chip operation and the chip state is in STARTUP mode, until no thermal shutdown event is present.(Note 3)
NORMAL: During NORMAL mode the user controls the chip using the Control Registers. If EN pin is set low, the CHIP_EN bit is reset to 0 .
POWER SAVE: In POWER SAVE mode analog blocks are disabled to minimize power consumption. See chapter Power Save Mode for further information.

Charge Pump Operational Description

 overviewThe LP5521 includes a pre-regulated switched-capacitor charge pump with a programmable voltage multiplication of 1 and $1.5 x$.
On $1.5 x$ mode by combining the principles of a switched-capacitor charge pump and a linear regulator, it generates a regulated 4.5 V output from Li-lon input voltage range. A twophase non-overlapping clock generated internally controls the operation of the charge pump. During the charge phase, both flying capacitors ($\mathrm{C}_{\mathrm{FLY} 1}$ and $\mathrm{C}_{\mathrm{FLY} 2}$) are charged from input voltage. In the pump phase that follows, the flying capacitors are discharged to output. A traditional switched capacitor charge pump operating in this manner will use switches with very low on-resistance, ideally 0Ω, to generate an output voltage that is $1.5 x$ the input voltage. The LP5521 regulates the output voltage by controlling the resistance of the input-connected pass-transistor switches in the charge pump.

OUTPUT RESISTANCE

At lower input voltages, the charge pump output voltage may degrade due to effective output resistance ($\mathrm{R}_{\mathrm{OUT}}$) of the charge pump. The expected voltage drop can be calculated by using a simple model for the charge pump illustrated in following figure.

20186297
The model shows a linear pre-regulation block (REG), a voltage multiplier (1.5 x), and an output resistance ($\mathrm{R}_{\text {OUT }}$). Output resistance models the output voltage drop that is inherent to switched capacitor converters. The output resistance is 3.5Ω (typ), and is function of switching frequency, input voltage, flying capacitors' capacitance value, internal resistances of switches and ESR of flying capacitors. When the output voltage is in regulation, the regulator in the model controls the voltage V' to keep the output voltage equal to 4.5 V (typ). With increased output current, the voltage drop across $\mathrm{R}_{\mathrm{OUT}}$ increases. To prevent drop in output voltage, the voltage drop across the regulator is reduced, V^{\prime} increases, and $\mathrm{V}_{\text {OUT }}$ remains at 4.5 V . When the output current increases to the point that there is zero voltage drop across the regulator, V^{\prime} equals the input voltage, and the output voltage is "on the edge" of regulation. Additional output current causes the output voltage to fall out of regulation, so that the operation is similar to a basic open-loop $1.5 x$ charge pump. In this mode, output current results in output voltage drop proportional to the output resistance of the charge pump. The out-of-regulation output voltage can be approximated by: $\mathrm{V}_{\mathrm{OUT}}=1.5 \times \mathrm{V}_{\mathrm{IN}}-$ $\mathrm{I}_{\text {OUT }} \times \mathrm{R}_{\text {OUT }}$.

CONTROLLING CHARGE PUMP

Charge pump is controlled with two CP_MODE bits in register 08 H . When both bits are low, charge pump is disabled and output voltage is pulled down with $300 \mathrm{k} \Omega$. Charge pump can be forced to bypass mode, so battery voltage is going directly to RGB outputs. In $1.5 x$ mode output voltage is boosted to 4.5 V . In automatic mode, charge pump operation mode is defined by LED outputs saturation like described in LED Forward Voltage Monitoring. In following table are listed operation modes and selection bits.

CONFIG register (08H):

Name	Bit	Description
CP_MODE	$4: 3$	Charge Pump Operation Mode
		$00 \mathrm{~b}=$ OFF
	$01 \mathrm{~b}=$ Forced to bypass mode (1x)	
$10 \mathrm{~b}=$ Forced to 1.5x mode		
		$11 \mathrm{~b}=$ Automatic mode selection

LED FORWARD VOLTAGE MONITORING

When charge pump automatic mode selection is enabled, voltages over LED drivers are monitored. If drivers do not have enough headroom, charge pump gain is set to 1.5 x . Driver saturation monitor does not have a fixed voltage limit, since saturation voltage is a function of temperature and current. Charge pump gain is set to 1 x , when battery voltage is high enough to supply all LEDs.
In automatic gain change mode, charge pump is switched to bypass mode (1x), when LEDs are inactive for over 50 ms .
Charge pump gain control utilizes digital filtering to prevent supply voltage disturbances from triggering gain changes. If R driver current source is connected to battery (address 08 H , bit R_TO_BATT = 1) voltage monitoring is disabled in R output, but still functional in B and G output.
LED forward voltage monitoring and gain control block diagram is shown below.

Voltage monitoring block diagram for one output

LED Driver Operational Description

The LP5521 LED drivers are constant current sources with 8bit PWM control. Output current can be programmed with ${ }^{2} \mathrm{C}$ register up to 25.5 mA . Current setting resolution is $100 \mu \mathrm{~A}$ (8-bit control).
R driver has two modes: current source can be connected to battery (V_{DD}) or to charge pump output. If current source is connected to battery, automatic charge pump gain control is not used for this output. This approach provides better efficiency when LED with low V_{F} is connected to R driver, and battery voltage is high enough to drive this LED in all conditions. R driver mode can be selected with $\mathrm{I}^{2} \mathrm{C}$ register bit. When address 08 H , bit R_TO_BATT $=1, \mathrm{R}$ current source is connected to battery. When it is 0 (default), R current source is connected to charge pump same way as in G and B drivers. G and B drivers are always connected to charge pump output. Some LED configuration examples are given in table below. When LEDs with low V_{F} are used, charge pump can be operating in bypass mode (1x). This eliminates the need of having double drivers for all outputs; one connected to battery and another connected to charge pump output. When LP5521 is driving a RGB LED, R channel can be configured to use battery power. This configuration increases power efficiency by minimizing the voltage drop across the LED driver.

LED configuration examples

Configuration	R output to BATT	R output to $\mathbf{C P}$	CP Mode
RGB LED with low V_{F} red	X		Auto (1 x or 1.5 x)
$3 \times$ low V_{F} LED		X	1 x
$3 \times$ white LED		X	Auto (1 x or 1.5 x)
$1 \times$ low V_{F} LED (R output)	X		Disabled

PWM frequency is either 256 Hz or 558 Hz , frequency is set with PWM_HF bit in register 08H. When PWM_HF is 0 , then the frequency is 256 Hz , and when bit is 1 then the PWM frequency is 558 Hz . Brightness adjustment is either linear or logarithmic. This can be set with register 00H LOG_EN bit. When LOG_EN = 0 linear adjustment scale is used, and when LOG_EN = 1 logarithmic scale is used. By using logarithmic scale the visual effect seems linear to the eye. Register control bits are presented in following tables:

R_CURRENT register (05H), G_CURRENT register (06H), B_CURRENT register (07H):

Name	Bit	Description			
CURRENT	$7: 0$	Current setting			
		bin	hex	dec	mA
		00000000	00	0	0.0
		00000001	01	1	0.1
		00000010	02	2	0.2
		00000011	03	3	0.3
		00000100	04	4	0.4
		00000101	05	5	0.5
		00000110	06	6	0.6
		\ldots	\ldots	\ldots	\ldots
		10101111	AF	$\mathbf{1 7 5}$	$\mathbf{1 7 . 5}$ (def)
		\ldots	\ldots	\ldots	\ldots
		11111011	FB	251	25.1
		11111100	FC	252	25.2
		11111101	FD	253	25.3
		11111110	FE	254	25.4
		11111111	FF	255	25.5

ENABLE register (00 H):

Name	Bit	Description
LOG_EN	7	Logarithmic PWM adjustment enable bit $0=$ Linear adjustment $1=$ Logarithmic adjustment

CONFIG register (08H):

Name	Bit	Description
PWM_HF	6	PWM clock frequency $0=256 \mathrm{~Hz}$, frequency defined by 32 kHz clock (internal or external) $1=558 \mathrm{~Hz}$, frequency defined by internal oscillator

Logarithmic and Linear PWM Adjustment Curves

20186218

LED Controller Operation Modes

Operation modes are defined in register address 01H. Each output channel (R, G, B) operation mode can be configured
separately. MODE registers are synchronized to 32 kHz clock. Delay between consecutive ${ }^{2} \mathrm{C}$ writes to OP_MODE register $(01 \mathrm{H})$ need to be longer than $153 \mu \mathrm{~s}$ (typ).

OP_MODE register (01H):

Name	Bit	Description
R_MODE	$5: 4$	R channel operation mode $\mathbf{0 0 b}=$ Disabled, reset R channel PC $\mathbf{0 1 b}=$ Load program to SRAM, reset R channel PC $\mathbf{1 0 b}=$ Run program defined by R_EXEC $\mathbf{1 1 b}=$ Direct control, reset R channel PC
G_MODE	$3: 2$	G channel operation mode $\mathbf{0 0 b}=$ Disabled, reset G channel PC $\mathbf{0 1 b}=$ Load program to SRAM, reset G channel PC $\mathbf{1 0 b}=$ Run program defined by G_EXEC $\mathbf{1 1 b}=$ Direct control, reset G channel PC
B_MODE	$1: 0$	B channel operation mode $\mathbf{0 0 b}=$ Disabled, reset B channel PC $\mathbf{0 1 b}=$ Load program to SRAM, reset B channel PC $\mathbf{1 0 b}=$ Run program defined by B_EXEC $\mathbf{1 1 b}=$ Direct control, reset B channel PC

DISABLED

Each channel can be configured to disabled mode. LED output current will be 0 during this mode. Disabled mode resets respective channel's PC.

LOAD Program

LP5521 can store 16 commands for each channel (R, G, B). Each command consists of 16 bits. Because one register has only 8 bits, one command requires two $\mathrm{I}^{2} \mathrm{C}$ register addresses. In order to reduce program load time LP5521 supports address auto incrementation. Register address is incremented after each 8 data bits. Whole program memory can be written in one $\mathrm{I}^{2} \mathrm{C}$ write sequence.
Program memory is defined in the LP5521 register table, 10 H to 2 FH for R channel, 30 H to 4 FH for G channel and 50 H to 6 FH for B channel. In order to be able to access program memory at least one channel operation mode needs to be LOAD Program.
Memory writes are allowed only to the channel in LOAD mode. All channels are in hold while one or several channels are in LOAD program mode, and PWM values are frozen for the channels which are not in LOAD mode. Program execu-
tion continues when all channels are out of LOAD program mode. LOAD Program mode resets respective channel's PC.

RUN PROGRAM

RUN Program mode executes the commands defined in program memory for respective channel (R, G, B). Execution register bits in ENABLE register define how program is executed. Program start position can be programmed to Program Counter register (see the following tables). By manually selecting the PC start value, user can write different lighting sequences to the memory, and select appropriate sequence with the PC register. If program counter runs to end (15) the next command will be executed from program location 0 .
If internal clock is used in the RUN program mode, operation mode needs to be written disabled (00b) before disabling the chip (with CHIP_EN bit or EN pin) to ensure that the sequence starts from the correct program counter (PC) value when restarting the sequence.
PC registers are synchronized to 32 kHz clock. Delay between consecutive I2C writes to PC registers (09H, OAH, OBH) need to be longer than $153 \mu \mathrm{~s}$ (typ.).

R Channel PC register (09H), G CHANNEL PC register (OAH), B CHANNEL PC register (OBH)

Name	Bit	Description
PC	$3: 0$	Program counter value from 0 to 15d

ENABLE register (00H)

Name	Bit	Description
R_EXEC	5:4	R channel program execution $\mathbf{0 0 b}=$ Hold: Wait until current command is finished then stop while EXEC mode is hold. PC can be read or written only in this mode. $\mathbf{0 1 b}=$ Step: Execute instruction defined by current R channel PC value, increment PC and change R_EXEC to 00b (Hold) 10b = Run: Start at program counter value defined by current R channel PC value $11 \mathrm{~b}=$ Execute instruction defined by current R channel $P C$ value and change R_EXEC to 00b (Hold)
G_EXEC	3:2	G channel program execution $\mathbf{0 0 b}=$ Hold: Wait until current command is finished then stop while EXEC mode is hold. PC can be read or written only in this mode. $\mathbf{0 1 b}=$ Step: Execute instruction defined by current G channel PC value, increment PC and change G_EXEC to 00b (Hold) $10 b=$ Run: Start at program counter value defined by current G channel PC value 11b = Execute instruction defined by current G channel $P C$ value and change G_EXEC to 00b (Hold)
B_EXEC	1:0	B channel program execution $\mathbf{0 0 b}=$ Hold: Wait until current command is finished then stop while EXEC mode is hold. PC can be read or written only in this mode. $\mathbf{0 1 b}=$ Step: Execute instruction defined by current B channel PC value, increment PC and change B_EXEC to 00b (Hold) 10b = Run: Start at program counter value defined by current B channel PC value 11b = Execute instruction defined by current B channel PC value and change B_EXEC to 00b (Hold)

EXEC registers are synchronized to 32 kHz clock. Delay between consecutive ${ }^{2}{ }^{2} \mathrm{C}$ writes to ENABLE register (00 H) need to be longer than $488 \mu \mathrm{~s}$ (typ.).

DIRECT Control

When R, G or B channel mode is set to 00b, the LP5521 drivers work in direct control mode. LP5521 LED channels can be controlled independently through $\mathrm{I}^{2} \mathrm{C}$. For each channel there is a PWM control register and a output current
control register. With output current control register is set what is the maximum output current with 8-bit resolution, step size is $100 \mu \mathrm{~A}$. Duty cycle can be set with 8 -bit resolution. Direct control mode resets respective channel's PC. PWM control bits are presented in following table:

R_PWM register (02H), G_PWM register (03H), B_PWM register (04H):

Name	Bit	Description
PWM	$7: 0$	LED PWM value during direct control operation mode $0000 ~$ $0000 \mathrm{~b}=0 \%$ $1111111 \mathrm{~b}=100 \%$

If charge pump automatic gain change is used in this mode, then PWM values need to be written 0 before changing the
drivers' operation mode to disabled (00b) to ensure proper automatic gain change operation.

LED Controller Programming Commands

LP5521 has three independent programmable channels (R, G, B). Trigger connections between channels are common for all channels. All channels have own program memories for storing complex patterns. Brightness control and patterns are done with 8 -bit PWM control (256 steps) to get accurate and smooth color control.
Program execution is timed with 32768 Hz clock. This clock can be generated internally or external 32 kHz clock can be connected to CLK_32K pin. Using external clock enables synchronization of LED timing to this clock rather than internal
clock. Selection of the clock is made with address 08H bits INT_CLK_EN and CLK_DET_EN. See External Clock Detection for details.
Supported commands are listed in the table below. Command compiler is available for easy sequence programming. With Command compiler it is possible to write sequences with simple ASCII commands, which are then converted to binary or hex format. See application note "LP5521 Programming Considerations" for examples of Command compiler usage.

Command	15	14	13	12	11	10	9	8	7	6	5	4	3	2	0
Ramp Wait	0	Prescale	Step time						Sign	Increment (number of steps)					
Set PWM	0	1	0						PWM Value						
Go to Start	0	0	0						0	0	0	0	0	0	0
Branch	1	0	1	Loop count						x	Step / command number				
End	1	1	0	Int	Reset						X				
Trigger	1	1	1	Wait for trigger on channels 5-0						Send trigger on channels 5-0					X

X means do not care whether 1 or 0 .

Ramp/Wait

Ramp command generates a PWM ramp starting from current value. At each ramp step the output is incremented by one. Time for one step is defined with Prescale and Step time bits. Minimum time for one step is 0.49 ms and maximum time is $63 \times 15.6 \mathrm{~ms}=1$ second/step, so it is possible to program very fast and also very slow ramps. Increment value defines how many steps are taken in one command. Number of actual steps is Increment +1. Maximum value is 127d, which corresponds to half of full scale (128 steps). If during ramp command PWM reaches minimum/maximum ($0 / 255$) ramp command will be executed to the end and PWM will stay at
minimum/maximum. This enables ramp command to be used as combined ramp and wait command in a single instruction. Ramp command can be used as wait instruction when increment is zero.
Setting register 00H bit LOG_EN sets the scale from linear to logarithmic. When LOG_EN = 0 linear scale is used, and when LOG_EN = 1 logarithmic scale is used. By using logarithmic scale the visual effect of the ramp command seems linear to the eye.

Ramp/Wait command															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	Prescale	Step time						Sign	Increment						

Name	Value(d)	Description
Prescale	0	Divides master clock (32 768Hz) by $16=2048 \mathrm{~Hz}, 0.49 \mathrm{~ms}$ cycle time
	1	Divides master clock (32768 Hz) by $512=64 \mathrm{~Hz}, 15.6 \mathrm{~ms}$ cycle time
Step time	$1-63$	One ramp increment done in (step time) \times (clock after prescale) Note: 0 means Set PMW command.
	0	Increase PWM output
	1	Decrease PWM output
Increment	$0-127$	The number of steps is Increment +1 . Note: 0 is a wait instruction.

Application example:

For example if following parameters are used for ramp:

- Prescale = 1 => cycle time $=15.6 \mathrm{~ms}$
- Step time $=2=>$ time $=15.6 \mathrm{~ms} \times 2=31.2 \mathrm{~ms}$
- Sign $=0=>$ rising ramp
- Increment $=4=>5$ cycles

Ramp command will be: $0100001000000100 \mathrm{~b}=4204 \mathrm{H}$
If current PWM value is 3 , and the first command is as described above and next command is a ramp with otherwise same parameters, but with Sign = 1 (Command $=4284$ H), the result will be like in the following figure:

Set PWM

Set PWM output value from 0 to 255 . Command takes sixteen 32 kHz clock cycles (= $488 \mu \mathrm{~s}$). Setting register 00H bit LOG_EN sets the scale from linear to logarithmic.

Set PWM command

$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
0	1	0	0	0	0	0	0				PWM value				

Go to start
Go to start command resets Program Counter register and continues executing program from the 00 H location. Com-
mand takes sixteen 32 kHz clock cycles. Note that default value for all program memory registers is 0000 H , which is Go to start command.

Go to start command

$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Branch

When branch command is executed, the 'step number' value is loaded to PC and program execution continues from this location. Looping is done by the number defined in loop count
parameter. Nested looping is supported (loop inside loop). The number of nested loops is not limited. Command takes sixteen 32 kHz clock cycles.

Branch command															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	Loop count						X	X	X	Step number			

Name	Value(d)	Description
loop count	$0-63$	The number of loops to be done. 0 means infinite loop.
step number	$0-15$	The step number to be loaded to program counter.

End

End program execution, resets the program counter and sets the corresponding EXEC register to 00b (hold). Command takes sixteen 32 kHz clock cycles.

End command															
$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
1	1	0	int	reset	X	X	X	X	X	X	X	X	X	X	X

Name	Value	Description
int	0	No interrupt will be sent.
	1	Send interrupt to processor by pulling the INT pin down and setting corresponding status register bit high to notify that program has ended. Interrupt can only be cleared by reading interrupt status register 0CH.
	0	Keep the current PWM value.
	1	Set PWM value to 0.

X means do not care whether 1 or 0 .

Trigger

Wait or send triggers can be used to e.g. synchronize operation between different channels. Send trigger command takes sixteen 32 kHz clock cycles and wait for trigger takes at least sixteen 32 kHz clock cycles. The receiving channel stores sent triggers. Received triggers are cleared by wait for trigger command if received triggers match to channels defined in the command. Channel waits for until all defined triggers have been received.
External trigger input signal must be at least two 32 kHz clock cycles (= $61 \mu \mathrm{~s}$ typ.) long to be recognized. Trigger output
signal is three 32 kHz clock cycles ($92 \mu \mathrm{~s}$ typ.) long. External trigger signal is active low, i.e. when trigger is sent/received the pin is pulled to GND. Sent external trigger is masked, i.e. the device which has sent the trigger will not recognize it. If send and wait external trigger are used on the same command, the send external trigger is executed first, then the wait external trigger.

Trigger command

Name	Value(d)	Description
wait trigger<5:0>	$0-31$	Wait for trigger for the channel(s) defined. Several triggers can be defined in the same command. Bit 0 is R, bit 1 is G, bit 2 is B and bit 5 is external trigger I/O. Bits 3 and 4 are not in use.
send trigger<5:0>	$0-31$	Send trigger for the channel(s) defined. Several triggers can be defined in the same command. Bit 0 is R, bit 1 is G, bit 2 is B and bit 5 is external trigger I/O. Bits 3 and 4 are not in use.

X means do not care whether 1 or 0 .

Power Save Mode

Automatic power save mode is enabled when PWRSAVE_EN bit in register address 08 H is 1 . Almost all analog blocks are powered down in power save, if external clock is used. Only charge pump protection circuits remain active. However if internal clock has been selected only charge pump and led drivers are disabled during power save since digital part of the LED controller need to remain active. In both cases charge pump enters 'weak 1x' mode. In this mode charge pump utilizes a passive current limited keepalive switch, which keeps the output voltage at battery level.

During program execution LP5521 can enter power save if there is no PWM activity in R, G and B outputs. To prevent short power save sequences during program execution, LP5521 has command look-ahead filter. In every instruction cycle R, G, B commands are analyzed, and if there is sufficient time left with no PWM activity, device will enter power save. In power save program execution continues uninterruptedly. When a command that requires PWM activity is executed, fast internal start-up sequence will be started automatically. Following tables describe commands and conditions that can activate power save. All channels (R, G, B) need to meet power save condition in order to enable power save.

LED controller operation mode (R,G,B_MODE)	Power save condition
00b	Disabled mode enables power save
01b	Load program to SRAM mode prevents power save
10b	Run program mode enables power save if there is no PWM activity and command look-ahead filter condition is met
11b	Direct control mode enables power save if there is no PWM activity
Command	Power save condition
Wait	No PWM activity and current command wait time longer than 50 ms. If prescale $=1$ then wait time needs to be longer than 80 ms .
Ramp	Ramp Command PWM value reaches minimum 0 and current command execution time left more than 50 ms . If prescale $=1$ then time left needs to be more than 80 ms .
Trigger	No PWM activity during wait for trigger command execution.
End	No PWM activity or Reset bit = 1
Set PWM	Enables power save if PWM set to 0 and next command generates at least 50 ms wait
Other commands	No effect to power save

See application note "LP5521 Power Efficiency Considerations" for more information.

External Clock Detection

The presence of external clock can be detected by the LP5521. Program execution is clocked with internal 32 kHz clock or with external clock. Clocking is controlled with register address 08H bits, INT_CLK_EN and CLK_DET_EN as seen on the following table.
External clock can be used if clock is present at CLK_32K pin. External clock frequency must be 32 kHz for the program execution / PWM timing to be like specified. If higher or lower frequency is used, it will affect the program engine execution speed. If other than 32 kHz clock frequency is used, the program execution timings must be scaled accordingly. The external clock detector block only detects too low clock frequency ($<15 \mathrm{kHz}$). If external clock frequency is higher than
specified, the external clock detector notifies that external clock is present. External clock status can be checked with read only bit EXT_CLK_USED in register address OCH, when the external clock detection is enabled (CLK_DET_EN bit = high). If EXT_CLK_USED $=1$, then the external clock is detected and it is used for timing, if automatic clock selection is enabled (see table below).
If external clock is stuck-at-zero or stuck-at-one, or the clock frequency is too low, the clock detector indicates that external clock is not present.
If external clock is not used on the application, CLK_32K pin should be connected to GND to prevent floating of this pin and extra current consumption.

CONFIG register (08H):

Name	Bit	Description
CLK_DET_EN,	$1: 0$	LED Controller clock source OOb $=$ External clock source (CLK_32K) $01 \mathrm{~b}=$ Internal clock $10 \mathrm{~b}=$ Automatic selection $11 \mathrm{~b}=$ Internal clock

Logic Interface Operational Description

LP5521 features a flexible logic interface for connecting to processor and peripheral devices. Communication is done with $\mathrm{I}^{2} \mathrm{C}$ compatible interface and different logic input/output pins makes it possible to synchronize operation of several devices.

IO Levels

I2C interface, CLK_32K and TRIG pins input levels are defined by EN pin. Using EN pin as voltage reference for logic inputs simplifies PWB routing and eliminates the need for dedicated V_{10} pin. In the following block diagram is described EN pin connections.

ADDR_SELO/1 are referenced to V_{DD} voltage. GPO pin level is defined by V_{DD} voltage.

GPO/INT pins

LP5521 has one General Purpose Output pin (GPO) and also INT pin can be configured as a GPO pin. When INT is configured as GPO output, it's level is defined by the V_{DD} voltage. State of the pins can be controlled with GPO register (0EH). GPO pins are digital CMOS outputs and no pull-up/down resistors are needed.
When INT pin GPO function is disabled, it operates as an open drain pin. INT signal is active low, i.e. when interrupt signal is sent, the pin is pulled to GND. External pull-up resistor is needed for proper functionality.

| GPO register (0EH) | |
| :---: | :---: | :--- |
| Name Bit Description
 INT_AS_GPO 2 Enable INT pin GPO function
 $0=$ INT pin functions as a INT pin
 $1=$ INT pin functions as a GPO pin
 GPO 1 $0=$ GPO pin state is low
 $1=$ GPO pin state is high
 INT 0 $0=$ INT pin state is low
 (INT_AS_GPO=1)
 $1=$ INT pin state is high
 (INT_AS_GPO=1) | |

TRIG pin

TRIG pin can function as an external trigger input or output. External trigger signal is active low, i.e. when trigger is sent/ received the pin is pulled to GND. TRIG is an open drain pin and external pull-up resistor is needed for trigger line. External trigger input signal must be at least two 32 kHz clock cycles long to be recognized. Trigger output signal is three 32 kHz clock cycles long. If TRIG pin is not used on application, it should be connected to GND to prevent floating of this pin and extra current consumption.

ADDR_SEL0,1 pins

ADDR_SELO, 1 pins define the chip ${ }^{2} \mathrm{C}$ address. Pins are referenced to $V_{D D}$ signal level. See $I^{2} \mathrm{C}$ Compatible Serial Bus Interface chapter for ${ }^{2} \mathrm{C}$ address definitions.

CLK_32K pin

CLK_32K pin is used for connecting external 32 kHz clock to LP5521. External clock can be used to synchronize the sequence engines of several LP5521. Using external clock can also improve automatic power save mode efficiency, because internal clock can be switched off automatically when device has entered power save mode, and external clock is present. See application note "LP5521 Power Efficiency Considerations" for more information.
Device can be used without the external clock. If external clock is not used on the application, CLK_32K pin should be connected to GND to prevent floating of this pin and extra current consumption.

${ }^{12}$ C Compatible Serial Bus Interface

Interface Bus Overview

The I2C compatible synchronous serial interface provides access to the programmable functions and registers on the device. This protocol uses a two-wire interface for bidirectional communications between the IC's connected to the bus. The two interface lines are the Serial Data Line (SDA), and the Serial Clock Line (SCL). These lines should be connected to a positive supply, via a pull-up resistor and remain HIGH even when the bus is idle.
Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on whether it generates or receives the serial clock (SCL).

Data Transactions

One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock (SCL). Consequently, throughout the clock's high period, the data should remain stable. Any changes on the SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New data should be sent during the low SCL state. This protocol permits a single data line to transfer both command/control information and data using the synchronous serial clock.

Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software) and a Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is transferred with the most significant bit first. After each byte, an Acknowledge signal must follow. The following sections provide further details of this process.

The Master device on the bus always generates the Start and Stop Conditions (control codes). After a Start Condition is generated, the bus is considered busy and it retains this status until a certain time after a Stop Condition is generated. A high-to-low transition of the data line (SDA) while the clock (SCL) is high indicates a Start Condition. A low-to-high transition of the SDA line while the SCL is high indicates a Stop Condition.

In addition to the first Start Condition, a repeated Start Condition can be generated in the middle of a transaction. This allows another device to be accessed, or a register read cycle.

Acknowledge Cycle

The Acknowledge Cycle consists of two signals: the acknowledge clock pulse the master sends with each byte transferred, and the acknowledge signal sent by the receiving device.
The master generates the acknowledge clock pulse on the ninth clock pulse of the byte transfer. The transmitter releases the SDA line (permits it to go high) to allow the receiver to send the acknowledge signal. The receiver must pull down the SDA line during the acknowledge clock pulse and ensure that SDA remains low during the high period of the clock pulse, thus signaling the correct reception of the last data byte and its readiness to receive the next byte.

"ACKNOWLEDGE AFTER EVERY BYTE" RULE

The master generates an acknowledge clock pulse after each byte transfer. The receiver sends an acknowledge signal after every byte received.
There is one exception to the "acknowledge after every byte" rule. When the master is the receiver, it must indicate to the transmitter an end of data by not-acknowledging ("negative acknowledge") the last byte clocked out of the slave. This "negative acknowledge" still includes the acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.

ADDRESSING TRANSFER FORMATS

Each device on the bus has a unique slave address. The LP5521 operates as a slave device with the 7-bit address. LP5521 ${ }^{2} \mathrm{C}$ address is pin selectable from four different choices. If 8 -bit address is used for programming, the 8 th bit is 1 for read and 0 for write. In the following table is represented the 8 -bit ${ }^{12} \mathrm{C}$ addresses.

ADDR_SEL [1:0]	$\mathbf{I}^{2} \mathbf{C}$ address write (8 bits)	$\mathbf{I}^{2} \mathbf{C}$ address read (8 bits)
00	$01100100=64 \mathrm{H}$	$01100101=65 \mathrm{H}$
01	$01100110=66 \mathrm{H}$	$01100111=67 \mathrm{H}$
10	$01101000=68 \mathrm{H}$	$01101001=69 \mathrm{H}$
11	$01101010=6 \mathrm{AH}$	$01101011=6 \mathrm{BH}$

Before any data is transmitted, the master transmits the address of the slave being addressed. The slave device should send an acknowledge signal on the SDA line, once it recognizes its address.
The slave address is the first seven bits after a Start Condition. The direction of the data transfer (R/W) depends on the bit sent after the slave address - the eighth bit.
When the slave address is sent, each device in the system compares this slave address with its own. If there is a match, the device considers itself addressed and sends an acknowledge signal. Depending upon the state of the R/W bit (1:read, $0:$ write), the device acts as a transmitter or a receiver.

${ }^{2} \mathrm{C}$ chip address

Control Register Write Cycle

- Master device generates start condition.
- Master device sends slave address (7 bits) and the data direction bit ($\mathrm{r} / \mathrm{w}=0$).
- Slave device sends acknowledge signal if the slave address is correct.
- Master sends control register address (8 bits).
- Slave sends acknowledge signal.
- Master sends data byte to be written to the addressed register.
- Slave sends acknowledge signal.
- If master will send further data bytes the control register address will be incremented by one after acknowledge signal.
- Write cycle ends when the master creates stop condition.

Control Register Read Cycle

- Master device generates a start condition.
- Master device sends slave address (7 bits) and the data direction bit ($\mathrm{r} / \mathrm{w}=0$).
- Slave device sends acknowledge signal if the slave address is correct.
- Master sends control register address (8 bits).
- Slave sends acknowledge signal.
- Master device generates repeated start condition.
- Master sends the slave address (7 bits) and the data direction bit ($\mathrm{r} / \mathrm{w}=1$).
- Slave sends acknowledge signal if the slave address is correct.
- Slave sends data byte from addressed register.
- If the master device sends acknowledge signal, the control register address will be incremented by one. Slave device sends data byte from addressed register.
- Read cycle ends when the master does not generate acknowledge signal after data byte and generates stop condition.

	Address Mode
Data Read	<Start Condition> <Slave Address><r/w = 0>[Ack] <Register Addr.>[Ack] <Repeated Start Condition> <Slave Address><r/w = 1>[Ack] [Register Data]<Ack or NAck> ... additional reads from subsequent register address possible <Stop Condition>
Data Write	<Start Condition> <Slave Address><r/w='0'>[Ack] <Register Addr.>[Ack] <Register Data>[Ack] ... additional writes to subsequent register address possible <Stop Condition>

<>Data from master [] Data from slave

Recommended External Components

CAPACITOR SELECTION

The LP5521 requires 4 external capacitors for proper operation $\left(C_{I N}=C_{\text {OUT }}=1 \mu F, C_{F L Y 1}=C_{F L Y 2}=470 \mathrm{nF}\right)$. Surfacemount multi-layer ceramic capacitors are recommended. These capacitors are small, inexpensive and have very low equivalent series resistance (ESR < $20 \mathrm{~m} \Omega$ typ.). Tantalum capacitors, OS-CON capacitors, and aluminum electrolytic capacitors are not recommended for use with the LP5521 due to their high ESR, as compared to ceramic capacitors.
For most applications, ceramic capacitors with X7R or X5R temperature characteristic are preferred for use with the LP5521. These capacitors have tight capacitance tolerance (as good as $\pm 10 \%$) and hold their value over temperature (X7R: $\pm 15 \%$ over $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; X5R: $\pm 15 \%$ over $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$).
Capacitors with Y5V or Z5U temperature characteristic are generally not recommended for use with the LP5521. Capacitors with these temperature characteristics typically have
wide capacitance tolerance ($+80 \%,-20 \%$) and vary significantly over temperature (Y5V: $+22 \%,-82 \%$ over $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range; $\mathrm{Z} 5 \mathrm{U}:+22 \%,-56 \%$ over $+10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range). Under some conditions, a nominal $1 \mu \mathrm{~F} Y 5 \mathrm{~V}$ or Z 5 U capacitor could have a capacitance of only $0.1 \mu \mathrm{~F}$. Such detrimental deviation is likely to cause Y 5 V and $\mathrm{Z5U}$ capacitors to fail to meet the minimum capacitance requirements of the LP5521. The minimum voltage rating acceptable for all capacitors is 6.3 V . The recommended voltage rating of the output capacitor is 10 V to account for DC bias capacitance losses.
Some ceramic capacitors, especially those in small packages, exhibit a strong capacitance reduction with the increased applied voltage (DC bias effect). The capacitance value can fall below half of the nominal capacitance. Choose output and input capacitor with DC bias voltage effect better than -50% at 5 V voltage ($0.5 \mu \mathrm{~F}$ at 5 V).

List of Recommended External Components

Model	Type	Vendor	Voltage Rating	Size inch (mm)
$1 \mu \mathrm{~F}$ for $\mathrm{C}_{\text {OUT }}$ and $\mathrm{C}_{\text {IN }}$				
C1005X5R1A105K	Ceramic X5R	TDK	10 V	0402 (1005)
ECJ0EB1A105M	Ceramic X5R	Panasonic	10 V	0402 (1005)
ECJUVBPA105M	Ceramic X5R, array of two	Panasonic	10 V	0504
470 nF for $\mathrm{C}_{\text {FLY } 1-2}$				
C1005X5R1A474K	Ceramic X5R	TDK	10 V	0402 (1005)
ECJ0EB0J474K	Ceramic X5R	Panasonic	10 V	0402 (1005)
LEDs	User Defined			

Program Load and Execution Example

Startup Device and Configure Device to SRAM Write Mode:

- Supply e.g. 3.6V to VDD
- Supply e.g. 1.8 V to EN
- Generate 32 kHz clock to CLK_32K pin
- Write to address 00H 0100 0000b (enable LP5521)
- Wait $500 \mu \mathrm{~s}$ (start-up delay)
- Write to address 01H 0001 0000b (Configure R channel into "Load program to SRAM" mode)

Program Load to SRAM (see figure below):

- Write to address 10 H 0000 0011b (1st ramp command 8 MSB)
- Write to address 11H 0111 1111b (1st ramp command 8 LSB)
- Write to address 12H 0100 1101b (1st wait command 8 MSB)
- Write to address 13H 0000 0000b (1st wait command 8 LSB)
- Write to address 14H 0000 0011b (2nd ramp command 8 MSB)
- Write to address 15H 1111 1111b (2nd ramp command 8 LSB)
- Write to address 16H 0110 0000b (2nd wait command 8 MSB)
- Write to address 17H 0000 0000b (2nd wait command 8 LSB)

Enable Powersave, charge pump automatic mode ($1 \mathrm{x} / 1.5 \mathrm{x}$) and use external 32 kHz clock:

- Write to address 08H 0011 1000b

Run program:

- Write to address 01H 0010 0000b (Configure LED controller operation mode to "Run program" in R channel
- Write to address 00H 0110 0000b (Configure program execution mode from "Hold" to "Run" in R channel

LP5521 will generate 1100 ms long LED pattern which will be repeated infinitely. LED pattern is illustrated on the figure below.

Direct PWM Control Example

Startup device:

- Supply e.g. 3.6V to VDD
- Supply e.g. 1.8 V to EN
- Write to address 00 H 0100 0000b (enable LP5521)
- Wait $500 \mu \mathrm{~s}$ (start-up delay)

Enable charge pump 1.5x mode and use internal clock:

- Write to address 08H 00010001 b

Direct PWM control:

- Write to address 01H 0011 1111b (Configure R, G and B channels into "Direct PWM control mode")

Write PWM values:

- Write to address 02H 1000 0000b (R driver PWM 50\% duty cycle)
- Write to address 03H 1100 0000b (G driver PWM 75\% duty cycle)
- Write to address 04H 1111 1111b (B driver PWM 100% duty cycle)

LEDs are turned on after the PWM values are written. Changes to the PWM value registers are reflected immediately to the LED brightness. Default LED current (17.5 mA) is used for LED outputs, if no other values are written.
See application note "LP5521 Programming Considerations" for more information.
LP5521

LP5521 Control Register Names and Default Values										
$\begin{aligned} & \hline \text { ADDR } \\ & \text { (HEX) } \end{aligned}$	REGISTER	D7	D6	D5	D4	D3	D2	D1	D0	DEFAULT
00	ENABLE	LOG_EN	CHIP_EN	R_EXEC[1:0]		G_EXEC[1:0]		B_EXEC[1:0]		00000000
01	OP MODE			R_MODE[1:0]		G_MODE[1:0]		B_MODE[1:0]		00000000
02	R PWM	R_PWM[7:0]								00000000
03	G PWM	G_PWM[7:0]								00000000
04	B PWM	B_PWM[7:0]								00000000
05	R CURRENT	R_CURRENT[7:0]								10101111
06	G CURRENT	G_CURRENT[7:0]								10101111
07	B CURRENT	B_CURRENT[7:0]								10101111
08	CONFIG		PWM_HF	PWRSAVE_EN	CP_MODE[1:0]		R_TO_BATT	CLK_DET_EN	INT_CLK_EN	00000000
09	R PC					R_PC[3:0]				00000000
OA	G PC					G_PC[3:0]				00000000
OB	B PC					B_PC[3:0]				00000000
OC	STATUS					EXT_CLK_USED	R_INT	G_INT	B_INT	00000000
OD	RESET	RESET[7:0]								00000000
OE	GPO						INT_AS_GPO	GPO	INT	00000000
10	PROG MEM R	CMD_R1[15:8]								00000000
11	PROG MEM R	CMD_R1[7:0]								00000000
		CMD_R16[15:8]								
2E	PROG MEM R									00000000
2F	PROG MEM R	CMD_R16[7:0]								00000000
30	PROG MEM G	CMD_G1[15:8]								00000000
31	PROG MEM G	CMD_G1[7:0]								00000000
		CMD_G16[15:8]								
4E	PROG MEM G									00000000
4F	PROG MEM G	CMD G16[7:0]								00000000
50	PROG MEM B	CMD_B1[15:8]								00000000
51	PROG MEM B	CMD_B1[7:0]								00000000
...										
6 E	PROG MEM B	CMD_B16[15:8]								00000000
6F	PROG MEM B	CMD_B16[7:0]								00000000

Enable Register (ENABLE)

Address 00H
Reset value 00H

Enable Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
LOG_EN	CHIP_EN	R_EXEC[1]	R_EXEC[0]	G_EXEC[1]	G_EXEC[0]	B_EXEC[1]	B_EXEC[0]

Name	Bit	Access	Active	Description
LOG_EN	7	R/W	High	Logarithmic PWM adjustment generation enable
CHIP_EN	6	R/W	High	Master chip enable. Enables device internal start-up sequence. See Modes of Operation for further information. Setting EN pin low resets the CHIP_EN state to 0.
R_EXEC	$5: 4$	R/W		R channel program execution. 00b = Hold: Wait until current command is finished then stop while EXEC mode is hold. PC can be read or written only in this mode. 01b = Step: Execute instruction defined by current R channel PC value, increment PC and change R_EXEC to 00b (Hold) $\mathbf{1 0 b}=$ Run: Start at program counter value defined by current R Channel PC value $11 b=$ Execute instruction defined by current R channel PC value and change R_EXEC to 00b (Hold)
G_EXEC	$3: 2$	R/W		G channel program execution $\mathbf{0 0 b}=$ Hold: Wait until current command is finished then stop while EXEC mode is hold. PC can be read or written only in this mode. 01b = Step: Execute instruction defined by current G channel PC value, increment PC and change G_EXEC to 00b (Hold) $\mathbf{1 0 b}=$ Run: Start at program counter value defined by current G Channel PC value $11 b=$ Execute instruction defined by current G channel PC value and change G_EXEC to 00b (Hold)
B_EXEC	$1: 0$	R/W		

EXEC registers are synchronized to 32 kHz clock. Delay between consecutive ${ }^{2} \mathrm{C}$ writes to ENABLE register (00 H) need to be longer than $488 \mu \mathrm{~s}$ (typ).

Operation Mode Register (OP MODE)

Address 01H
Reset value 00H

OP Mode Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
		R_MODE[1]	R_MODE[0]	G_MODE[1]	G_MODE[0]	B_MODE[1]	B_MODE[0]

Name	Bit	Access	Active	Description
R_MODE	5:4	R/W		```R channel operation mode 00b = Disabled 01b = Load program to SRAM, reset R channel PC 10b = Run program defined by R_EXEC 11b = Direct control```
G_MODE	3:2	R/W		G channel operation mode 00b = Disabled 01b = Load program to SRAM, reset G channel PC $10 b=$ Run program defined by G_EXEC 11b = Direct control
B_MODE	1:0	R/W		```B channel operation mode 00b = Disabled 01b = Load program to SRAM, reset B channel PC 10b = Run program defined by B_EXEC 11b = Direct control```

MODE registers are synchronized to 32 kHz clock. Delay between consecutive ${ }^{2}{ }^{2} \mathrm{C}$ writes to OP_MODE register (01 H) need to be longer than $153 \mu \mathrm{~s}$ (typ).

R channel PWM control (R_PWM)

Address 02H
Reset value 00H

R PWM Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R_PWM[7:0]							

Name	Bit	Access	Active	Description
R_PWM	$7: 0$	R/W		R Channel PWM value during direct control operation mode

G Channel PWM Control (G_PWM)

Address 03H
Reset value 00H

G PWM Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
G_PWM[7:0]							

Name	Bit	Access	Active	
G_PWM	$7: 0$	R/W		G Channel PWM value during direct control operation mode

B Channel PWM Control (B_PWM)

Address 04H
Reset value 00H

B PWM Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
B_PWM[7:0]							

Name	Bit	Access	Active	Description
B_PWM	$7: 0$	R/W		B Channel PWM value during direct control operation mode

R Channel Current (R_CURRENT)

Address 05H
Reset Value AFH

R CURRENT Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
R_CURRENT[7:0]							

Name	Bit	Access	Active	Description
R_CURRENT	7:0	R/W		Current setting $\begin{aligned} & 00000000 \mathrm{~b}=0.0 \mathrm{~mA} \\ & 00000001 \mathrm{~b}=0.1 \mathrm{~mA} \\ & 00000010 \mathrm{~b}=0.2 \mathrm{~mA} \\ & 00000011 \mathrm{~b}=0.3 \mathrm{~mA} \\ & 00000100 \mathrm{~b}=0.4 \mathrm{~mA} \\ & 00000101 \mathrm{~b}=0.5 \mathrm{~mA} \\ & 00000110 \mathrm{~b}=0.6 \mathrm{~mA} \end{aligned}$ 1010 1111b $=17.5 \mathrm{~mA}$ (default) 1111 1011b $=25.1 \mathrm{~mA}$ $11111100 \mathrm{~b}=25.2 \mathrm{~mA}$ $11111101 \mathrm{~b}=25.3 \mathrm{~mA}$ $11111110 \mathrm{~b}=25.4 \mathrm{~mA}$ $11111111 \mathrm{~b}=25.5 \mathrm{~mA}$

G Channel Current (G_CURRENT)
Address 06H
Reset Value AFH
G CURRENT Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
G_CURRENT[7:0]							

Name	Bit	Access	Active	Description
G_CURRENT	7:0	R/W		$\begin{aligned} & \text { Current setting } \\ & 00000000 \mathrm{~b}=0.0 \mathrm{~mA} \\ & 00000001 \mathrm{~b}=0.1 \mathrm{~mA} \\ & 00000010 \mathrm{~b}=0.2 \mathrm{~mA} \\ & 00000011 \mathrm{~b}=0.3 \mathrm{~mA} \\ & 00000100 \mathrm{~b}=0.4 \mathrm{~mA} \\ & 00000101 \mathrm{~b}=0.5 \mathrm{~mA} \\ & 00000110 \mathrm{~b}=0.6 \mathrm{~mA} \\ & \ldots \\ & 10101111 \mathrm{~b}=17.5 \mathrm{~mA} \text { (default) } \\ & \ldots \\ & 11111011 \mathrm{~b}=25.1 \mathrm{~mA} \\ & 11111100 \mathrm{~b}=25.2 \mathrm{~mA} \\ & 11111101 \mathrm{~b}=25.3 \mathrm{~mA} \\ & 11111110 \mathrm{~b}=25.4 \mathrm{~mA} \\ & 1111111 \mathrm{~b}=25.5 \mathrm{~mA} \\ & \hline \end{aligned}$

B Channel Current (B_CURRENT)

Address 07H
Reset value AFH
B CURRENT Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
B_CURRENT$[7: 0]$							

Name	Bit	Access	Active	Description
B_CURRENT	7:0	R/W		Current setting $00000000 \mathrm{~b}=0.0 \mathrm{~mA}$ $00000001 \mathrm{~b}=0.1 \mathrm{~mA}$ $00000010 \mathrm{~b}=0.2 \mathrm{~mA}$ $00000011 \mathrm{~b}=0.3 \mathrm{~mA}$ $00000100 \mathrm{~b}=0.4 \mathrm{~mA}$ $00000101 \mathrm{~b}=0.5 \mathrm{~mA}$ $00000110 \mathrm{~b}=0.6 \mathrm{~mA}$ \ldots $10101111 \mathrm{~b}=17.5 \mathrm{~mA}$ (default) \ldots $11111011 \mathrm{~b}=25.1 \mathrm{~mA}$ $11111100 \mathrm{~b}=25.2 \mathrm{~mA}$ $11111101 \mathrm{~b}=25.3 \mathrm{~mA}$ $11111110 \mathrm{~b}=25.4 \mathrm{~mA}$ $11111111 \mathrm{~b}=25.5 \mathrm{~mA}$

Configuration Control (CONFIG)

Address 08H
Reset value 00H
CONFIG Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
	PWM_HF	PWRSAVE_EN	CP_MODE[1:0]	R_TO_BATT 2	CLK_DET_EN	INT_CLK_EN	

Name	Bit	Access	Active	Description
PWM_HF	6	R/W	High	PWM clock $0=256$ Hz PWM clock used (CLK_32K) $1=558 \mathrm{~Hz}$ PWM clock used (internal oscillator)
PWRSAVE_EN	5	R/W	High	Power save mode enable
CP_MODE	4:3	R/W		Charge pump operation mode 00b = OFF 01b = Forced to bypass mode (1x) $10 b=$ Forced to $1.5 x$ mode $11 \mathrm{~b}=$ Automatic mode selection
R_TO_BATT	2	R/W	High	R channel supply connection $0=\mathrm{R}$ output connected to charge pump $1=\mathrm{R}$ output connected to battery
CLK_DET_EN, INT_CLK_EN	1:0	R/W		LED Controller clock source 00b = External clock source (CLK_32K) 01b = Internal clock 10b = Automatic selection $11 \mathrm{~b}=$ Internal clock

R Channel Program Counter Value (R channel PC)

Address 09H
Reset value 00H
R Channel PC Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
				R_PC[3] 2	R_PC[2]	R_PC[1]	R_PC[0]

Name	Bit	Access	Active	Description
R_PC	$3: 0$	R/W		R channel program counter value

PC registers are synchronized to 32 kHz clock. Delay between consecutive ${ }^{2} \mathrm{C}$ writes to PC registers needs to be longer than 153 μs (typ.). PC register can be read or written only when EXEC mode is 'hold'.

G Channel Program Counter Value (G channel PC)

Address 0AH
Reset value 00H
G Channel PC Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
				G_PC[3] 2	G_PC[2]	G_PC[1]	G_PC[0]

Name	Bit	Access	Active	Description
G_PC	$3: 0$	R/W		G channel program counter value

PC registers are synchronized to 32 kHz clock. Delay between consecutive ${ }^{2} \mathrm{C}$ writes to PC registers needs to be longer than 153 $\mu \mathrm{s}$ (typ.). PC register can be read or written only when EXEC mode is 'hold'.

B Channel Program Counter Value (B channel PC)

Address 0BH
Reset value 00H

B Channel PC Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
				B_PC[3] 2	B_PC[2]	B_PC[1]	B_PC[0]

Name	Bit	Access	Active	Description
B_PC	$3: 0$	R/W		B channel program counter value

PC registers are synchronized to 32 kHz clock. Delay between consecutive ${ }^{2} \mathrm{C}$ writes to PC registers needs to be longer than 153 μs (typ.). PC register can be read or written only when EXEC mode is 'hold'.

STATUS/INTERRUPT Register

Address 0CH
Reset value 00H
STATUS/INTERRUPT Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
				EXT_CLK USED	R_INT	G_INT	B_INT

Name	Bit	Access	Active	Description
EXT_CLK USED	3	R		External clock state $0=$ Internal 32kHz clock used $1=$ External 32kHz clock used
R_INT	2	R	High	Interrupt from R channel
G_INT	1	R	High	Interrupt from G channel
B_INT	0	R	High	Interrupt from B channel

Note: Register INT bits will be cleared when read operation to Status/Interrupt register occurs. INT output pin (active low) will go high after read operation.

RESET Register

Address 0DH
Reset value 00 H
RESET Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
RESET							

Name	Bit	Access	Active	Description
RESET	$7: 0$	W		Reset all register values when FFH is written. No acknowledge from LP5521 after write.

GPO Register

Address 0EH
Reset value 00H
GPO Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
					INT_AS_GPO	GPO	INT

Name	Bit	Access	Active	Description
INT_AS_GPO	2	R/W	High	Enable INT pin GPO function
GPO	1	R/W	High	GPO pin state: $0=$ LOW $1=$ HIGH
INT	0	R/W	High	INT pin state (when INT_AS_GPO=1): $0=$ LOW $1=$ HIGH

PROGRAM MEMORY

Address $10 \mathrm{H}-6 \mathrm{FH}$
Reset values 00H
Please see chapter LED Controller Programming Commands for further information.

Command	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ramp Wait	0	Prescale	Step time						Sign	Increment						
Set PWM	0	1	0						PWM Value							
Go toStart	0	0	0						0	0	0	0	0	0	0	0
Branch	1	0	1	Loop Count						X	Step number					
End	1	1	0	Int	Reset						X					
Trigger	1	1	1	Wait for trigger on channels 5-0						Send trigger on channels 5-0						X

Physical Dimensions inches (millimeters) unless otherwise noted

TMD20XXX (Rev D)
The dimension for X 1 , X 2 and X 3 are as given:
$\mathrm{X} 1=1.717 \mathrm{~mm} \pm 0.03 \mathrm{~mm}$
$X 2=2.066 \mathrm{~mm} \pm 0.03 \mathrm{~mm}$
$X 3=0.600 \mathrm{~mm} \pm 0.075 \mathrm{~mm}$
TMD20ECA: Thin microSMD-20, Small Bump

YQA24A: Bumped LLP-24

Notes

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH	www.national.com/webench
Audio	www.national.com/audio	Analog University	www.national.com/AU
Clock Conditioners	www.national.com/timing	App Notes	www.national.com/appnotes
Data Converters	www.national.com/adc	Distributors	www.national.com/contacts
Displays	www.national.com/displays	Green Compliance	www.national.com/quality/green
Ethernet	www.national.com/ethernet	Packaging	www.national.com/packaging
Interface	www.national.com/interface	Quality and Reliability	www.national.com/quality
LVDS	www.national.com/lvds	Reference Designs	www.national.com/refdesigns
Power Management	www.national.com/power	Feedback	www.national.com/feedback
Switching Regulators	www.national.com/switchers		
LDOs	www.national.com/ldo		
LED Lighting	www.national.com/led		
PowerWise	www.national.com/powerwise		
Serial Digital Interface (SDI)	www.national.com/sdi		
Temperature Sensors	www.national.com/tempsensors		
Wireless (PLL/VCO)	www.national.com/wireless		

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.
EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.
Copyright® 2008 National Semiconductor Corporation
For the most current product information visit us at www.national.com

	National Semiconductor	National Semiconductor Europe	National Semiconductor Asia	National Semiconductor Japan
Americas Technical	Technical Support Center	Pacific Technical Support Center	Technical Support Center	
Support Center	Email: europe.support@nsc.com	Email: ap.support@nsc.com		
Email: support@nsc.com	German Tel: $+49(0) 1805010771$			
	English Tel: $+44(0) 8708504288$			

[^0]
[^0]: www.national.com

