Positive High-Voltage, Hot-Swap Controller

General Description

The MAX5932 is a fully integrated hot-swap controller for +9 V to +80 V positive supply rails. The MAX5932 allows for the safe insertion and removal of circuit cards into a live backplane without causing glitches on the backplane power-supply rail. This device is pin and function compatible to LT1641-1. The MAX5932 features a programmable foldback-current limit. If the device remains in current limit for more than a programmable time, the external n-channel MOSFET latches off. Other features include a programmable undervoltage lockout and a programmable output-voltage slew rate through an external n-channel MOSFET.
The MAX5932 provides a power-good output (PWRGD) to indicate the status of the output voltage. For a variety of PWRGD/PWRGD, latch/autoretry-fault management, autoretry duty-cycle options, refer to the MAX5933 and MAX5934 data sheets.

The MAX5932 operates in the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range. This device is available in an 8 -pin SO package.

Applications
Hot Board Insertion
Electronic Circuit Breaker
Industrial High-Side Switch/Circuit Breaker
Network Routers and Switches
24V/48V Industrial/Alarm Systems

Typical Application Circuit appears at end of data sheet.

- Pin and Function Compatible with LT1641-1
- Provides Safe Hot Swap for +9V to +80V Power Supplies
- Safe Board Insertion and Removal from Live Backplanes
- Active-High Power-Good Output (PWRGD)
- Programmable Foldback-Current Limiting
- High-Side Drive for an External N-Channel MOSFET
- Undervoltage Lockout (UVLO)
- Overvoltage Protection
- Latched Fault Management
- User-Programmable Supply Voltage Power-Up Rate

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX5932ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

Pin Configuration

TOP VIEW

Positive High-Voltage, Hot-Swap Controller

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND)

VCC	-0.3V to +85V
SENSE, FB, ON	-0.3V to (VCC +0.3 V)
TIMER, PWRGD	.-0.3V to +85V
GATE	-0.3V to +95V
Maximum GATE	-50mA +150 mA
	$\pm 50 \mathrm{~m}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 8-Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	o $+150^{\circ} \mathrm{C}$
ESD Rating (Human Body Model)	2000V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+24 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VCC			9		80	V
Supply Current	IcC	$\mathrm{V}_{\mathrm{ON}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=80 \mathrm{~V}$			1.4	3.5	mA
VCC Undervoltage Lockout	VLKO	$\mathrm{V}_{\text {CC }}$ low-to-high transition		7.5	8.3	8.8	V
VCC Undervoltage Lockout Hysteresis	VLKOHYST				0.4		V
FB High-Voltage Threshold	VFBH	FB low-to-high transition		1.280	1.313	1.345	V
FB Low-Voltage Threshold	$V_{\text {FBL }}$	FB high-to-low transition		1.221	1.233	1.245	V
FB Hysteresis	$\mathrm{V}_{\text {FBHYST }}$				80		mV
FB Input Bias Current	IINFB	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$		-1		+1	$\mu \mathrm{A}$
FB Threshold Line Regulation	$\Delta V_{F B}$	$\begin{aligned} & 9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 80 \mathrm{~V}, \mathrm{ON}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$				0.05	mV / V
SENSE Trip Voltage (VCC - VSENSE)	VSENSETRIP	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		8	12	17	
		$\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		39	47	55	
GATE Pullup Current	IGATEUP	Charge pump on, $\mathrm{VGATE}=7 \mathrm{~V}$		-5	-10	-20	$\mu \mathrm{A}$
GATE Pulldown Current	IGATEDN	Any fault condition, V GATE $=2 \mathrm{~V}$		35	70	100	mA
External N-Channel Gate Drive	$\Delta V_{\text {GATE }}$	VGATE - VCC	$\mathrm{V}_{C C}=10.8 \mathrm{~V}$ to 20V	4.5	6.2	18	V
			$\mathrm{V}_{C C}=20 \mathrm{~V}$ to 80 V	10	13.6	18	
TIMER Pullup Current	ItIMERUP	$\mathrm{V}_{\text {TIMER }}=0 \mathrm{~V}$		-24	-80	-120	$\mu \mathrm{A}$
TIMER Pulldown Current	ItIMERON	$\mathrm{V}_{\text {TIMER }}=1 \mathrm{~V}$		1.5	3	4.5	$\mu \mathrm{A}$
ON Logic-High Threshold	VONH	ON low-to-high transition		1.280	1.313	1.355	V
ON Logic-Low Threshold	VONL	ON high-to-low transition		1.221	1.233	1.245	V
ON Hysteresis	VONHYST				80		mV
ON Input Bias Current	IINON	VON $=0 \mathrm{~V}$		-1		+1	$\mu \mathrm{A}$
PWRGD Leakage Current	IOH	VPWRGD $=80 \mathrm{~V}$				10	$\mu \mathrm{A}$
PWRGD Output Low Voltage	Vol	$\mathrm{lO}=2 \mathrm{~mA}$				0.4	V
		$\mathrm{IO}=4 \mathrm{~mA}$				2.5	
SENSE Input Bias Current	ISENSE	$\mathrm{V}_{\text {SENSE }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {CC }}$		-1		+3	$\mu \mathrm{A}$
Thermal Shutdown		Temperature rising			150		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis					20		${ }^{\circ} \mathrm{C}$

Positive High-Voltage, Hot-Swap Controller

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{VCC}=+24 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ON Low-to-GATE Low Propagation Delay	tPHLON	CGATE $=0$, Figures 1, 2		6		$\mu \mathrm{s}$
ON High-to-GATE High Propagation Delay	tPLHON	CGATE $=0$, Figures 1, 2		1.7		$\mu \mathrm{s}$
FB Low-to-PWRGD Low Propagation Delay	tPHLFB	Figures 1, 3		3.2		$\mu \mathrm{s}$
FB High-to-PWRGD High Propagation Delay	tPLHFB	Figures 1, 3		1.5		$\mu \mathrm{s}$
(VCC - VSENSE) High-to-GATE Low Propagation Delay	tPHLSENSE	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{CGATE}=0$, Figures 1,4	0.5		2	$\mu \mathrm{s}$

Note 1: All currents into the device are positive and all currents out of the device are negative. All voltages are referenced to ground, unless noted otherwise.

Positive High-Voltage, Hot-Swap Controller

Test Circuit and Timing Diagrams

Figure 1. Test Circuit

Figure 3. FB to PWRGD Timing

Figure 2. ON to GATE Timing

Figure 4. SENSE to GATE Timing

Positive High-Voltage, Hot-Swap Controller

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+48 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

FB HIGH-VOLTAGE THRESHOLD

Icc vs. TEMPERATURE

FB HYSTERESIS vs. TEMPERATURE

FB LOW-VOLTAGE THRESHOLD vs. TEMPERATURE

Igate PULLUP CURRENT vs. TEMPERATURE

GATE DRIVE vs. TEMPERATURE

GATE DRIVE vs. Vcc

Positive High-Voltage, Hot-Swap Controller

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+48 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

ON LOW-VOLTAGE THRESHOLD

ON HYSTERESIS vs. TEMPERATURE

SENSE REGULATION VOLTAGE vs. VFB

Positive High-Voltage, Hot-Swap Controller

Pin Description

PIN	NAME	FUNCTION
1	ON	On/Off Control Input. ON is used to implement the undervoltage lockout threshold and resets the part after a fault condition (see the Detailed Description section).
2	FB	Power-Good Comparator Input. Connect a resistive divider from output to FB to GND to monitor the output voltage (see the Power-Good Detection section). FB is also used as a feedback for the current-limit foldback function.
3	PWRGD	Open-Drain Power-Good Output. PWRGD is high when $V_{F B}$ is higher than $V_{F B H .}$. PWRGD is low when $V_{F B}$ is lower than VFBL.
4	GND	Ground
5	TIMER	Timing Input. Connect a capacitor from TIMER to GND to program the maximum time the part is allowed to remain in current limit (see the TIMER section).
6	GATE	Gate-Drive Output. The high-side gate drive for the external n-channel MOSFET (see the GATE section).
7	SENSE	Current-Sense Input. Connect a sense resistor from VCC to SENSE and the drain of the external n-channel MOSFET.
8	VCC	Power-Supply Input. Bypass VCC to GND with a 0.1 $14 F$ capacitor. Input voltage range is from +9V to +80V.

Positive High-Voltage, Hot-Swap Controller

Positive High-Voltage, Hot-Swap Controller

Detailed Description

The MAX5932 is a fully integrated hot-swap controller for positive supply rails. The device allows for the safe insertion and removal of circuit cards into live backplanes without causing glitches on the backplane power-supply rail. During startup the MAX5932 acts as a current regulator using an external sense resistor and MOSFET to limit the amount of current drawn by the load.
The MAX5932 features latched-off fault management. When an overcurrent or an overtemperature fault occurs, the MAX5932 turns the external MOSFET off and keeps it off. After the fault condition goes away, cycle the power supply or toggle ON low and high again to unlatch the device.
The MAX5932 operates from +9 V to +80 V supply voltage range and has a default undervoltage lockout (UVLO) set to +8.3 V . The UVLO threshold is adjustable using a resistive divider connected from V_{CC} to ON to GND (see R1 and R2 in Figure 5).

The MAX5932 monitors the input voltage, the output voltage, the output current, and the die temperature. This device features a power-good output (PWRGD) to indicate the status of the output voltage by monitoring the voltage at FB (see the Power-Good Detection section).
As shown in Figure 5, a sense resistor is connected between VCC and SENSE to sense the load current. The device regulates the voltage across the sense resistor (VIN - VSENSE) to 47 mV when the voltage at FB $\geq 0.5 \mathrm{~V}$. The current-limit threshold (VSENSETRIP) decreases linearly from 47 mV to 12 mV as FB decreases from 0.5 V to 0 V .

An undervoltage fault is detected when ON goes below the threshold, $\mathrm{VONL}=1.233 \mathrm{~V}$, which causes the voltage at GATE to go low, and results in turning off the MOSFET. To turn the MOSFET on again, ON must pass the $\mathrm{VONH}^{\mathrm{ON}}=$ 1.313V threshold.

Figure 5. Application Circuit

Positive High-Voltage, Hot-Swap Controller

Abstract

Applications Information Hot-Circuit Insertion When circuit boards are inserted into a live backplane, the supply bypass capacitors on the boards draw high peak currents from the backplane power bus as they charge up. The transient currents can permanently damage the connector pins and glitch the system supply, causing other boards in the system to reset.

Power-Up Sequence

The power supply on a board is controlled by placing an external n-channel MOSFET (Q1) in the power path (Figure 5). Resistor RSENSE provides current detection and capacitor C1 provides control of the GATE slew rate. Resistor R6 provides current control-loop compensation while R5 prevents high-frequency oscillations in Q1. Resistors R1 and R2 provide undervoltage sensing.
After the power pins first make contact, transistor Q1 is turned off. When the voltage at ON exceeds the turn-on threshold voltage, the voltage on VCc exceeds the undervoltage lockout threshold, and the voltage on TIMER is less than 1.233V, transistor Q1 turns on (Figure 6).
The voltage at GATE rises with a slope equal to $10 \mu \mathrm{~A} / \mathrm{C} 1$ and the supply inrush current is set at:

$$
\text { IINRUSH }=\text { CL } \times 10 \mu \mathrm{~A} / \mathrm{C} 1
$$

When the voltage across the current-sense resistor RSENSE reaches VSENSETRIP, then the inrush current is limited by the internal current-limit circuitry that adjusts the voltage on GATE to maintain a constant voltage across the sense resistor.
Once the voltage at the output has reached its final value, as sensed by resistors R3 and R4, PWRGD goes high.

Figure 6. Power-Up Waveforms

Short-Circuit Protection

The MAX5932 features a programmable foldback current limit with an electronic circuit breaker that protects against short circuits or excessive supply currents. The current limit is set by placing a sense resistor between VCC (pin 8) and SENSE (pin 7).
To prevent excessive power dissipation in the pass transistor and to prevent voltage spikes on the input supply during short-circuit conditions at the output, the current folds back as a function of the output voltage that is sensed at FB (Figure 7).
When the voltage at FB is V , the current-limit circuit drives GATE to force a constant 12 mV drop across the sense resistor. As the output voltage at FB increases, the voltage across the sense resistor increases until FB reaches 0.5 V , at the point that the voltage across the sense resistor is held constant at 47 mV .
The maximum current limit is calculated as:
ILIMIT = 47mV/RSENSE

For a 0.025Ω sense resistor, the current limit is set at 1.88 A and folds back to 480 mA when the output is shorted to ground.
The MAX5932 also features a variable overcurrent response time. The time required to regulate Q1's drain current depends on:

- Q1's input capacitance.
- GATE capacitor C1 and compensation resistor R6.
- The internal delay from SENSE to GATE.

Figure 8 shows the delay from a voltage step at SENSE until GATE voltage starts falling, as a function of overdrive.

Figure 7. Current-Limit Sense Voltage vs. Feedback Voltage

Positive High-Voltage, Hot-Swap Controller

Figure 8. Response Time to Overcurrent
TIMER
TIMER provides a method for programming the maximum time the device is allowed to operate in current limit. When the current-limit circuitry is not active, TIMER is pulled to GND by a $3 \mu \mathrm{~A}$ current source. After the current-limit circuit becomes active, an $80 \mu \mathrm{~A}$ pullup current source is connected to TIMER and the voltage rises with a slope equal to $77 \mu \mathrm{~A} / \mathrm{C}_{\text {TIMER }}$ as long as the current-limit circuit remains active. Once the desired maximum current-limit time is chosen, the capacitor value is calculated using the following equations:

$$
\mathrm{C}(\mathrm{nF})=65 \times \mathrm{t}(\mathrm{~ms})
$$

or

$$
\text { TLIMIT }=(\text { CTIMER } / 80 \mu \mathrm{~A}) \times 1.233 \mathrm{~V}
$$

When the current-limit circuit turns off, TIMER is discharged to GND by the $3 \mu \mathrm{~A}$ current source.
Whenever TIMER reaches 1.233 V , the internal fault latch is set. GATE is immediately pulled to GND and TIMER is pulled back to GND by the $3 \mu \mathrm{~A}$ current source. When TIMER falls below 0.5 V , ON is pulsed low to reset the internal fault latch.
The waveform in Figure 9 shows how the output latches off following a short circuit. The drop across the sense resistor is held at 12 mV as the timer ramps up. Since the output did not rise, FB remains below 0.5 V and the circuit latches off. For Figure 9, $C_{T}=100 \mathrm{nF}$.

Undervoltage and Overvoltage Detection ON can be used to detect an undervoltage condition at the power-supply input. ON is internally connected to an analog comparator with 80 mV of hysteresis. If ON falls below its threshold voltage (1.233V), GATE is pulled low and is held low until ON is high again.

Figure 9. Short-Circuit Waveforms
Figure 10 shows an overvoltage detection circuit. When the input voltage exceeds the Zener diode's breakdown voltage, D1 turns on and starts to pull TIMER high. After TIMER is pulled higher than 1.233 V , the fault latch is set and GATE is pulled to GND immediately, turning off transistor Q1 (see Figure 11). Operation is restored either by interrupting power or by pulsing ON low.

Power-Good Detection The MAX5932 includes a comparator for monitoring the output voltage. The noninverting input (FB) is compared against an internal 1.233 V precision reference and exhibits 80 mV hysteresis. The comparator's output (PWRGD) is an open drain one capable of operating from a pullup as high as 80 V .
The PWRGD can be used to directly enable/disable a power module with an active-high enable input. Figure 12 shows how to use PWRGD to control an active-low enable-input power module. Signal inversion is accomplished by transistor Q2 and R7 or use MAX5933.

Supply Transient Protection

The MAX5932 is 100% tested and guaranteed to be safe from damage with supply voltages up to 80 V . However, spikes above 85 V may damage the device. During a short-circuit condition, the large change in currents flowing through the power-supply traces can cause inductive voltage spikes that could exceed 85 V . To minimize the spikes, the power-trace parasitic inductance should be minimized by using wider traces or heavier trace plating and a $0.1 \mu \mathrm{~F}$ bypass capacitor placed between Vcc and GND. A transient voltage suppressor (TVS) at the input can also prevent damage from voltage surges.

Positive High-Voltage, Hot-Swap Controller

Figure 10. Overvoltage Detection

GATE Voltage

A curve of Gate Drive vs. $V_{C C}$ is shown in Figure 13. GATE is clamped to a maximum voltage of 18 V above the input voltage. At a minimum input-supply voltage of 9 V , the minimum gate-drive voltage is 4.5 V . When the inputsupply voltage is higher than 20 V , the gate-drive voltage is at least 10 V and a standard n -channel MOSFET can be used. In applications over a 9 V to 20 V range, a logic-level n-FET must be used with a proper protection Zener diode between its gate and source (as D1 shown in Figure 5).

Thermal Shutdown

If the MAX5932 die temperature reaches $+150^{\circ} \mathrm{C}$, an overtemperature fault is generated. As a result, GATE goes low and turns the external MOSFET off. The MAX5932 die temperature must cool down below $+130^{\circ} \mathrm{C}$ before the overtemperature fault condition is removed.

Figure 11. Overvoltage Waveforms

Positive High-Voltage, Hot-Swap Controller

Figure 12. Active-Low Enable Module

Figure 13. Gate Drive vs. Supply Voltage

Layout Considerations

To achieve accurate current sensing, a Kelvin connection is recommended. The minimum trace width for 1oz copper foil is 0.02in per amplifier to make sure the trace stays at a reasonable temperature. Using 0.03in per amplifier or wider is recommended. Note that 1oz copper exhibits a sheet resistance of about $530 \mu \Omega /$ square. Small resistances add up quickly in high-current applications. To improve noise immunity, connect the resistor-divider to ON close to the device and keep traces to V_{CC} and GND short. A $0.1 \mu \mathrm{~F}$ capacitor from ON to GND also helps reject induced noise. Figure 14 shows a layout that addresses these issues.
External MOSFET must be thermally coupled to the MAX5932 to ensure proper thermal shutdown operation (see Figure 14).

Positive High-Voltage, Hot-Swap Controller

Chip Information
TRANSISTOR COUNT: 1573 PROCESS: BiCMOS

Figure 14. Recommended Layout for R1, R2, and RSENSE

*DIODES, INC.
\qquad

Positive High-Voltage, Hot-Swap Controller

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
\qquad 15

