FL tube driver **BU2879AK**

The BU2879AK is a driver IC for fluorescent displays. It is equipped with 26 high-voltage withstand outputs and can display from 11 segments of 15 characters to 16 segments of 8 characters. This IC is equipped with a key scanning function, and general-purpose input pins, and is ideal for front panels in VTRs and other equipment. A serial interface allows functions to be controlled from a microcomputer.

Applications

VCRs

Features

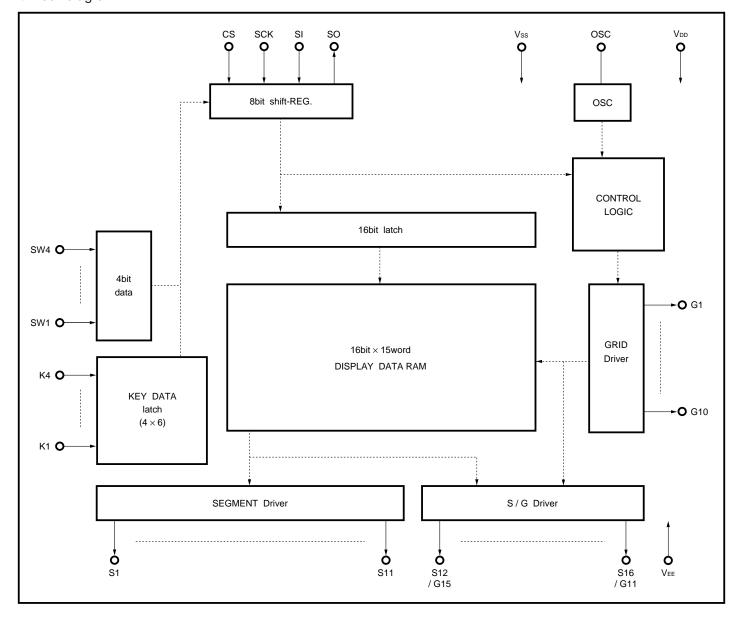
- 1) High withstanding voltage output.
- 2) Display modes: $11S \times 15G \sim 16S \times 8G$.
- 3) Variable display luminance (7 steps).
- 4) 3-wire serial interface.

- 5) Key scanning function (6×4) .
- 6) Internal pull-down resistance (high voltage withstand output).
- 7) QFP 44 package.

● Absolute maximum ratings (Ta = 25°C, Vss = 0V)

Parameter	Symbol	Limits	Unit
Applied voltage 1	V _{DD}	− 0.3 ~ + 7.0	V
Applied voltage 2	VEE	VDD + 0.3 ~ VDD - 40	V
Input voltage	Vin	- 0.3 ~ V _{DD} + 0.3	V
Power dissipation	Pd	850*	mW
Operating temperature	Topr	− 25 ~ + 75	°C
Storage temperature	Tstg	- 55 ~ + 125	°C

Note) Operation is not guaranteed at these values.


Note) Power dissipation is reduced by 8.5mW for each increase in Ta of 1°C over 25°C.

● Recommended operating conditions (Ta = 25°C, Vss = 0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating power supply voltage 1	V _{DD}	4.5	5.0	5.5	V
Operating power supply voltage 2	VEE	V _{DD} - 37	V _{DD} – 35	V _{DD} – 0	V

^{*} When mounted on a $70\times70\times1.6\text{mm}$ glass epoxy board

●Block diagram

Pins descriptions

Pin No.	Pin	Name	1/0	Function
14, 38	V _{DD}	Power supply pin 1	Input	Connected to system power supply.
44	osc	Oscillation pin	Input / output	Capacitor connection pin for oscillation
7, 43	Vss	Ground pin	Input	Connected to system ground.
6	SI	Serial data input	Input	Serial data input starting from MSB
5	SO	Serial data output	Output	Serial data output starting from MSB; output is Nch open drain.
8	SCK	Serial clock input	Input	Serial data read at rising edge.
9	CS	Serial chip select	Input	Serial initialization when LOW, valid at HIGH.
15 ~ 25	S1 ~ S11	High-voltage withstand output pin for segment	Output	Output pin for segment; output is Pch open drain + pull-down resistance.
27	VEE	Power supply pin 2	Input	Pull-down resistance connection for FLP driver output.
42 ~ 39, 37 ~ 32	G1 ~ G10	High-voltage withstand output pin for grid	Output	Output pin for grid; output is Pch open drain + pull-down resistance.
26, 28 ~ 31	S12 / G15	High-voltage withstand output pin for segment / grid	Output	Used to switch output between segment and grid; output is Pch open drain + pull-down resistance.
10 ~ 13	K1 ~ K4	Key data input pin	Input	Data input pin for key scanning.
1 ~ 4	SW1 ~ SW4	General-purpose input pin	Input	General-purpose input pin; input data can be transmitted serially to microcomputer.

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vdd = 5V, Vss = 0V, Vdd - Vee = 35V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
Supply current	IDD	_	_	5	mA	44-pin attachment, at 1000pF oscillation	Fig.1
Input threshold voltage	VIN	1.5	_	3.5	V	Pins 1 to 4, 6, 8, 9 to 13	Fig.4
Input current	lin	_	_	10	μΑ	Pins 1 to 4, 6, 8, 9 to 13	Fig.2
OSC oscillation frequency	Fosc	130	200	300	kHz	44-pin attachment, at 1000pF oscillation	Fig.3
Segment output current	loseg	6	_	_	mA	Pins 15 to 26, 28 to 31, $V_0 = V_{DD} - 2V^*$	Fig.2
Grid output current	logrd	18	_	_	mA	Pins 26, 28 to 37, 39 to 42, $V_O = V_{DD} - 2V^*$	Fig.2
Leakage current when OFF	loff	_	_	10	μΑ	Pins 15 to 26, 28 to 37, $V_O = V_{DD} - V_{EE}$	Fig.2
Output pull-down resistance	R□	35	70	140	kΩ	Pins 15 to 26, 28 to 37	Fig.2
Maximum operating frequency	Fмах	_	_	1	MHz	Design guarantee value	Fig.3
⟨Serial transmission⟩							
Input data hold	Тѕн	0.16	_	_	μs	_	_
Input data setup	Tss	0.16	_	_	μs	_	_
Output data delay	TD		_	0.3	μs	_	_
Input clock cycle	Tscyc	0.5	_	_	μs	_	_
Input clock "H" width	Tsw	40	_	60	%	At minimum input clock cycle	_

^{*} For the high voltage withstand output pins for the segment / grid of pins 26 and 28 to 31, when segment output is specified, segment output current is output, and when grid output is specified, grid current is output.

Measurement circuits

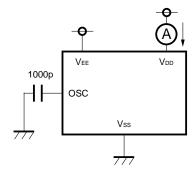


Fig.1

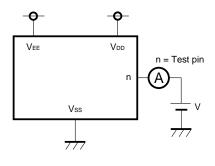


Fig.2

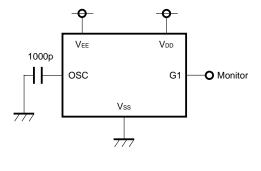


Fig.3

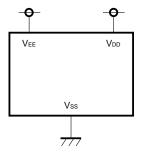


Fig.4

• Electrical characteristic curves

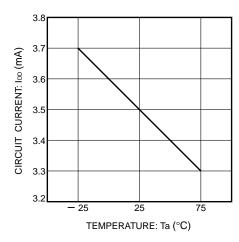


Fig. 5 Supply current temperature characteristics

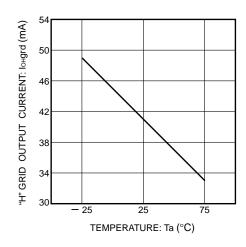


Fig. 6 "H" grid output current temperature characteristics

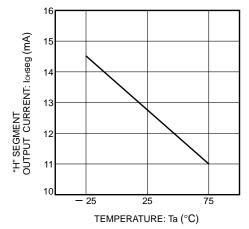
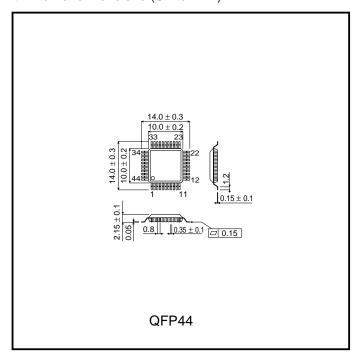



Fig.7 "H" segment output current temperature characteristics

●External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

ROHM

Appendix1-Rev1.0