General Description

The MAX6922/MAX6932/MAX6933/MAX6934 multi-output, 76V, vacuum-fluorescent display (VFD) tube drivers that interface a VFD tube to a microcontroller or a VFD controller, such as the MAX6850-MAX6853. The MAX6922/MAX6934 have 32 outputs, while the MAX6932 has 27 outputs, and the MAX6933 has 28 outputs. All devices are also suitable for driving telecom relays.

Data is input using standard 4-wire serial interface (CLOCK, DATA, LOAD, BLANK) compatible with other VFD drivers and controllers.

For easy display control, the active-high BLANK input forces all driver outputs low, turning the display off, and automatically puts the IC into shutdown mode. Display intensity may also be controlled by directly pulse-width modulating the BLANK input.

The MAX6922/MAX6932/MAX6934 have a serial interface data output, DOUT, allowing any number of devices to be cascaded on the same serial interface.

The MAX6932/MAX6933/MAX6934 have a negative supply voltage input, VSS, allowing the drivers' output swing to be made bipolar to simplify filament biasing in many applications.

The MAX6922 is available in a 44-pin PLCC package, the MAX6932 and MAX6933 are available in 36-pin SSOP packages, and the MAX6934 is available in 44-pin PLCC and TQFN packages.

Maxim also offers a 12-output VFD driver (MAX6920) and 20-output VFD drivers (MAX6921/MAX6931).

White Goods	Industrial Weighing
Gaming Machines	Security
Automotive	Telecom
Avionics	VFD Modules
Instrumentation	Industrial Control

Selector Guide

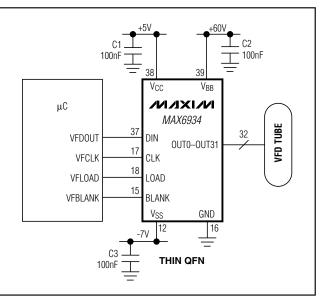
Applications

PART	NO. OF OUTPUTS	BIPOLAR OUTPUT SWING	DOUT FOR CASCADING
MAX6922	32	No	Yes
MAX6932	27	Yes	Yes
MAX6933	28	Yes	No
MAX6934	32	Yes	Yes

Pin Configurations appear at end of data sheet.

M/XI/M

For pricing delivery, and ordering information please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.


Features

- 5MHz Industry-Standard 4-Wire Serial Interface
- 3V to 5.5V Logic Supply Range
- 8V to 76V Grid/Anode Supply Range
- -11V to 0V Filament Bias Supply (MAX6932/MAX6933/MAX6934 Only)
- Push-Pull CMOS High-Voltage Outputs
- Outputs Can Source 40mA, Sink 4mA Continuously
- Outputs Can Source 75mA Repetitive Pulses
- Outputs Can Be Paralleled for Higher Current Drive
- Any Output Can Be Used as a Grid or an Anode Driver
- BLANK Input Simplifies PWM Intensity Control
- -40°C to +125°C Temperature Range as Standard

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX6922AQH	-40°C to +125°C	44 PLCC	Q44-1
MAX6932AAX	-40°C to +125°C	36 SSOP	A36-2
MAX6933AAX	-40°C to +125°C	36 SSOP	A36-2
MAX6934AQH	-40°C to +125°C	44 PLCC	Q44-1
MAX6934ATH	-40°C to +125°C	44 TQFN-EP*	T4477-3
*EP = Exposed p	addle.		

Typical Operating Circuit

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

(Voltage with respect to GND.)

(Voltage with respect to GND.)	OUT_SINK Current	
V _{BB} 0.3V to +80V	CLK, DIN, LOAD, BLANK, DOUT Current±10mA	
V _{CC} 0.3V to +6V	Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
V _{SS} (MAX6932/MAX6933/MAX6934 only)12V to +0.3V	36-Pin SSOP (derate 11.8mW/°C	
V _{BB} - V _{SS} (MAX6932/MAX6933/MAX6934 only)0.3V to +80V	over +70°C)	
OUT_ (MAX6922 only)(GND0.3V) to (V _{BB} + 0.3V)	44-Pin Thin QFN (derate 27mW/°C	
OUT_ (MAX6932/MAX6933/MAX6934 only)	over +70°C)2165mW	
(V _{SS} 0.3V) to (V _{BB} + 0.3V)	44-Pin PLCC (derate 13.3mW/°C	
All Other Pins0.3V to (V _{CC} + 0.3V)	over +70°C)	
OUT_ Continuous Source Current45mA	Operating Temperature Range	
OUT_ Pulsed (1ms max, 1/4 max duty) Source Current80mA	(T _{MIN} to T _{MAX})40°C to +125°C	
Total OUT_ Continuous Source Current840mA	Junction Temperature+150°C	
Total OUT_ Continuous Sink Current140mA	Storage Temperature Range65°C to +150°C	
Total OUT_ Pulsed (1ms max, 1/4 max duty)	Lead Temperature (soldering, 10s)+300°C	

OLIT Sink Current

Source Current-960mA

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Typical Operating Circuit, V_{BB} = 8V to 76V, V_{CC} = 3V to 5.5V, V_{SS} = -11V to 0V, V_{BB} - $V_{SS} \le$ 76V, T_A = T_{MIN} to T_{MAX} , unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS
Logic Supply Voltage	V _{CC}			3		5.5	V
Tube Supply Voltage	V _{BB}			8		76	V
Bias Supply Voltage (MAX6932/ MAX6933/MAX6934 Only)	V _{SS}			-11		0	V
Total Supply Voltage (MAX6932/ MAX6933/MAX6934 Only)	V _{BB} - V _{SS}					76	V
		All outputs OUT_ low,	$T_A = +25^{\circ}C$		81	105	
Lasia Quantu Operating Quarant	1	CLK = idle	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			125	
Logic Supply Operating Current	Icc	All outputs OUT_ high,	$T_A = +25^{\circ}C$		813	950	μA
		CLK = idle	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			1000	
			$T_A = +25^{\circ}C$		2.0	2.5	
		All outputs OUT_ low	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			3	
Tube Supply Operating Current	IBB	All outpute OLIT bigh	$T_A = +25^{\circ}C$		1.3	1.75	mA
		All outputs OUT_ high	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			2.0	
		All outputs OUT low	$T_A = +25^{\circ}C$	-1	-0.65		
Bias Supply Operating Current (MAX6932/MAX6933/MAX6934	laa	All outputs OOT_low	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-1.2			mA
Only)	ISS	All outputs OUT_ high	$T_A = +25^{\circ}C$	-1.7	-1.5		ШA
		All outputs OOT_ high	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-1.8			
			$T_A = +25^{\circ}C$		V _{BB} - 1.1		
		V _{BB} ≥ 15V, I _{OUT} = -25mA	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	V _{BB} - 2			
		10012311A	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	V _{BB} - 2.	5		
Lligh Voltage OLT	\/	$V_{BB} \ge 15V$,	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	V _{BB} - 3.	5		v
High-Voltage OUT_	V _H	I _{OUT} = -40mA	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	V _{BB} - 4.0	C		v
		0)/ .)/ .15)/	$T_A = +25^{\circ}C$		V _{BB} - 1.2		
		8V < V _{BB} < 15V, I _{OUT} = -25mA	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	V _{BB} - 2.	5		
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	V _{BB} - 3.0	C		

2

15m A

ELECTRICAL CHARACTERISTICS (continued)

(Typical Operating Circuit, V_{BB} = 8V to 76V, V_{CC} = 3V to 5.5V, V_{SS} = -11V to 0V, V_{BB} - V_{SS} \leq 76V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CC	NDITIONS	MIN	ТҮР	MAX	UNITS
			$T_A = +25^{\circ}C$		0.75	1.2	
		V _{BB} ≥ 15V, IOUT = 1mA	$T_A = -40^{\circ}C$ to $+85^{\circ}C$			1.5	
Low-Voltage OUT_	λ.		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			2.1	V
(MAX6932 Only)	VL		$T_A = +25^{\circ}C$		0.8	1.3	V
		8V < V _{BB} < 15V, I _{OUT} = 1mA	$T_A = -40^{\circ}C$ to $+85^{\circ}C$			1.7	
			$T_A = -40^{\circ}C$ to $+125^{\circ}C$			2.2	
			$T_A = +25^{\circ}C$	V _{SS}	+ 0.75	V _{SS} + 1.2	
		V _{BB} ≥ 15V, I _{OUT} = 1mA	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			V _{SS} + 1.5	
Low-Voltage OUT_	λ.	1001 - 111A	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			V _{SS} + 2.1	V
(MAX6932/MAX6933/MAX6934 Only)	VL		$T_A = +25^{\circ}C$	VS	s + 0.8	$V_{SS} + 1.3$	v
Striy)		8V < V _{BB} < 15V, I _{OUT} = 1mA	$T_A = -40^{\circ}C$ to $+85^{\circ}C$			V _{SS} + 1.7	
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			$V_{SS} + 2.2$	
Rise Time OUT_ (20% to 80%)	t _R	$V_{BB} = 60V, C_{L} = 50$	0pF, R _L =2.3k Ω		0.9	2.5	μs
Fall Time OUT_ (80% to 20%)	tF	$V_{BB} = 60V, C_{L} = 50$	0pF, R _L =2.3k Ω		0.6	1.5	μs
SERIAL INTERFACE TIMING CH	IARACTERIS	TICS					
LOAD Rising to OUT_ Falling Delay		(Notes 2, 3)			0.9	3	μs
LOAD Rising to OUT_ Rising Delay		(Notes 2, 3)			1.2	3	μs
BLANK Rising to OUT_ Falling Delay		(Notes 2, 3)			0.9	3	μs
BLANK Falling to OUT_ Rising Delay		(Notes 2, 3)			1.3	3	μs
Input Leakage Current CLK, DIN, LOAD, BLANK	I _{IH} , I _{IL}				0.05	10	μA
Logic-High Input Voltage CLK, DIN, LOAD, BLANK	VIH			0.8 x V _{CC}			V
Logic-Low Input Voltage CLK, DIN, LOAD, BLANK	VIL					0.3 x V _{CC}	V
Hysteresis Voltage DIN, CLK, LOAD, BLANK	ΔVI				0.6		V
High-Voltage DOUT	VOH	ISOURCE = -1.0mA		V _{CC} - 0.5			V
Low-Voltage DOUT	Vol	I _{SINK} = 1.0mA				0.5	V

ELECTRICAL CHARACTERISTICS (continued)

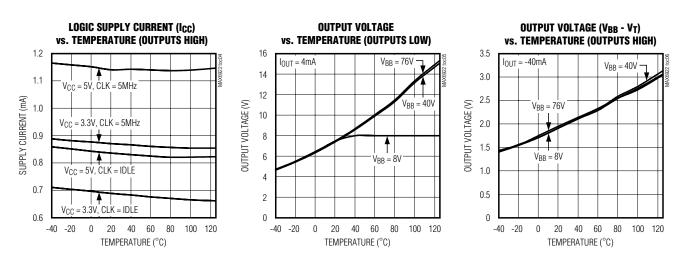
(Typical Operating Circuit, V_{BB} = 8V to 76V, V_{CC} = 3V to 5.5V, V_{SS} = -11V to 0V, V_{BB} - V_{SS} \leq 76V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Note 1)

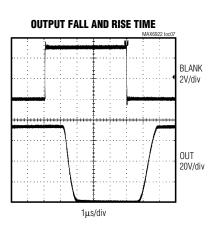
PARAMETER	SYMBOL	C	ONDITIONS	MIN	ТҮР	MAX	UNITS
Rise and Fall Time DOUT		C _{DOUT} = 10pF	3V to 4.5V		80	130	
		(Note 2)	4.5V to 5.5V		50	80	ns
CLK Clock Period	tCP			200			ns
CLK Pulse-Width High	tсн			90			ns
CLK Pulse-Width Low	tcL			90			ns
CLK Rise to LOAD Rise Hold	tCSH	(Note 2)		100			ns
DIN Setup Time	tDS			5			ns
DIN Hold Time	+	3.0V to 4.5V		20			
	tDH	4.5V to 5.5V		15			ns
	ta a		3.0V to 4.5V	25	120	240	
DOUT Propagation Delay	tdo	$C_{DOUT} = 10 pF$	4.5V to 5.5V	20	75	150	ns
LOAD Pulse High	tcsw			60			ns

Note 1: All parameters are tested at $T_A = +25^{\circ}C$. Specifications over temperature are guaranteed by design.

Note 2: Guaranteed by design.

Note 3: Delay measured from control edge to when output OUT_ changes by 1V.


(V_{CC} = 5.0V, V_{BB} = 76V, and T_A = +25°C, unless otherwise noted.)


TUBE SUPPLY CURRENT (IBB) TUBE SUPPLY CURRENT (IBB) LOGIC SUPPLY CURRENT (ICC) vs. TEMPERATURE (OUTPUTS LOW) vs. TEMPERATURE (OUTPUTS HIGH) vs. TEMPERATURE (OUTPUTS LOW) 2.0 1.0 $V_{CC} = 5V, CLK = 5MHz$ $V_{BB} = 76V$ 2.8 $V_{BB} = 76$ 1.8 0.9 2.4 1.6 0.8 V_{CC} = 3.3V, CLK = 5MHz 1 (mA) (mA) 1.4 0.7 V_{BB} : = 40V $V_{BB} = 8V$ ¥ SUPPLY CURRENT SUPPLY CURRENT 1.2 0.6 A П $V_{BB} = 40V$ 1.0 0.5 $V_{BB} = 8V$ 0.8 0.4 $V_{CC} = 3.3V, CLK = IDLE$ 0.6 0.3 V_{CC} = 5V, CLK = IDLE 0.4 0.2 0.4 0.2 0.1 0 0 0 -40 -20 0 20 40 60 80 100 120 -40 -20 0 20 40 60 80 100 120 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) TEMPERATURE (°C) TEMPERATURE (°C)

Typical Operating Characteristics

Typical Operating Characteristics (continued)

(V_{CC} = 5.0V, V_{BB} = 76V, and T_A = +25°C, unless otherwise noted.)

Pin Description

	PIN			
MAX6922/ MAX6934 PLCC	MAX6932/ MAX6933 SSOP	MAX6934 TQFN	NAME	FUNCTION
1	1	39	V _{BB}	VFD Supply Voltage
2	2	40	DOUT (MAX6932)	Serial-Data Output. Data is clocked out of the internal shift register to DOUT on CLK's falling edge. For the MAX6933 only—VFD anode and grid driver.
	2		(OUT27) (MAX6933)	(OUT27 is a push-pull output swinging from V_{BB} to $V_{SS}.)$
3, 4, 5, 7– 17, 19, 20, 25, 26, 27, 30–42		1–11, 13, 14, 19, 20, 21, 24–36, 41, 42, 43	OUT0 to OUT31	VFD Anode and Grid Drivers. OUT_ are push-pull outputs swinging from V_{BB} to GND for the MAX6922 and from V_{BB} to V_{SS} for the MAX6934.
_	3 –13, 15, 16, 21–34	—	OUT0 to OUT26	VFD Anode and Grid Drivers. OUT_ are push-pull outputs swinging from V_{BB} to $V_{\text{SS}}.$
6, 28, 29	_	22, 23, 44	N.C.	No Connection. Not internally connected.
18	—	—	N.C. (V _{SS})	For the MAX6922—No Connection. Not internally connected. For the MAX6934—bias supply voltage.
	14	12	V _{SS}	Bias Supply Voltage
21	17	15	BLANK	Blanking Input. High forces outputs OUT_ low without altering the contents of the output latches. Low enables outputs OUT_ to follow the state of the output latches.
22	18	16	GND	Ground
23	19	17	CLK	Serial-Clock Input. Data is loaded into the internal shift register on CLK's rising edge. On CLK's falling edge, data is clocked out of DOUT.
24	20	18	LOAD	Load Input. Data is loaded transparently from the internal shift register to the output latch while LOAD is high. Data is latched into the output latch on LOAD's rising edge, and retained while LOAD is low.
43	35	37	DIN	Serial-Data Input. Data is loaded into the internal shift register on CLK's rising edge.
44	36	38	V _{CC}	Logic Supply Voltage
_	_	EP	EP	Exposed Paddle. Connect to a large ground plane to maximize thermal performance.

M/IXI/M

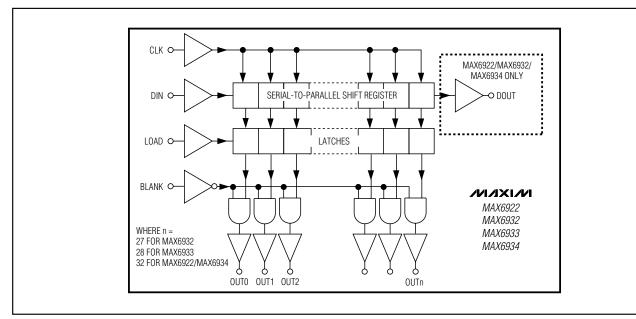


Figure 1. MAX6922/MAX6932/MAX6933/MAX6934 Functional Diagram

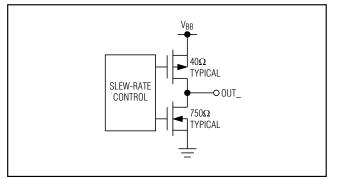


Figure 2. MAX6922 CMOS Output Driver Structure

Detailed Description

The MAX6922/MAX6932/MAX6933/MAX6934 are VFD tube drivers comprising a 4-wire serial interface driving high-voltage Rail-to-Rail® output ports. The driver is suitable for both static and multiplexed displays.

The output ports feature high current-sourcing capability to drive current into grids and anodes of static or multiplex VFDs. The ports also have active current sinking for fast discharge of capacitive display electrodes in multiplexing applications.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

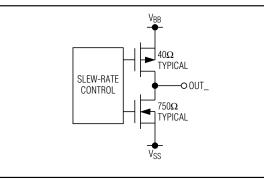


Figure 3. MAX6932/MAX6933/MAX6934 CMOS Output Driver Structure

The 4-wire serial interface comprises a shift register and transparent latch with 32 bits for the MAX6922/ MAX6934, 28 bits for the MAX6933, and 27 bits for the MAX6932. The shift register is written through a clock input CLK and a data input DIN. For the MAX6922/ MAX6932/MAX6934, the data propagates to a data output DOUT. The data output allows multiple drivers to be cascaded and operated together. The output latch is transparent to the shift register outputs when LOAD is high, and latches the current state on the falling edge of LOAD.

Each driver output is a slew-rate controlled CMOS push-pull switch driving between V_{BB} and GND (MAX6922) or V_{BB} and V_{SS} (MAX6932/MAX6933/MAX6934). The output rise time is always slower than the output fall time to avoid shoot-through currents during output transitions. The output slew rates are slow enough to minimize EMI, yet are fast enough so as not to impact the typical 100 μ s digit multiplex period and affect the display intensity.

Initial Power-Up and Operation

An internal reset circuit clears the internal registers on power-up. All outputs and the interface output DOUT (MAX6922/MAX6932/MAX6934 only) initialize low regardless of the initial logic levels of the CLK, DIN, BLANK, and LOAD inputs.

4-Wire Serial Interface

These driver ICs use a 4-wire serial interface with three inputs (DIN, CLK, LOAD) and a data output (DOUT, MAX6922/MAX6932/MAX6934 only). This interface is used to write data to the ICs (Figure 4) (Table 1). The serial interface data word length is 32 bits for the MAX6922/MAX6934, 27 bits for the MAX6932, and 28 bits for the MAX6933.

The functions of the four serial interface pins are:

- CLK input is the interface clock, which shifts data into the shift register on its rising edge.
- LOAD input passes data from the shift register to the output latch when LOAD is high (transparent latch), and latches the data on LOAD's falling edge.
- DIN is the interface data input, and must be stable when it is sampled on the rising edge of CLK.

 DOUT is the interface data output, which shifts data out from the shift register on the rising edge of CLK. Data at DIN is propagated through the shift register and appears at DOUT (n CLK cycles + t_{DO}) later, where n is the number of drivers in the IC.

A fifth input, BLANK, can be taken high to force the outputs low, without altering the contents of the output latches. When the BLANK input is low, the outputs follow the state of the output latches. A common use of the BLANK input is PWM intensity control.

The BLANK input's function is independent of the operation of the serial interface. Data can be shifted into the serial interface shift register and latched regardless of the state of BLANK.

Writing Device Registers Using the 4-Wire Serial Interface

The MAX6922/MAX6932/MAX6933/MAX6934 are normally written using the following sequence:

- 1) Take CLK low.
- Clock n bits of data in order D_{n-1} first to D0 last into DIN, observing the data setup and hold times.
- 3) Load the n output latches with a falling edge on LOAD, where n is 27 for the MAX6932, 28 for the MAX6933, and 32 for the MAX6922 and MAX6934.

LOAD may be high or low during a transmission. If LOAD is high, then the data shifted into the shift register at DIN appears at the OUT0 to OUT_{n-1} outputs.

CLK and DIN may be used to transmit data to other peripherals. Activity on CLK always shifts data into the shift register. However, the output latches only update on the rising edge of LOAD, and the last n bits of data

/N/IXI/N

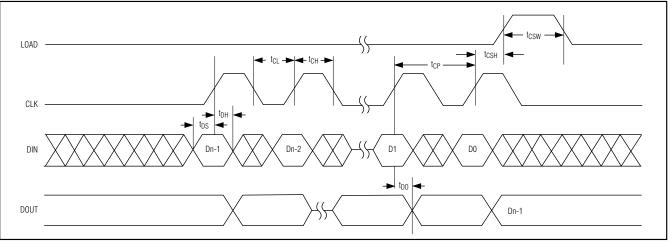


Figure 4. 4-Wire Serial Interface Timing Diagram

SERIAL DATA	CLOCK INPUT	SHI	T RE	GIS	TEF	R CON	TENTS	LOAD INPUT		LAT	сно	ONT	ENTS	6	BLANKING INPUT		ουτ	PUT	col	NTEN	гs
INPUT DIN	CLK	D0	D1	D2		Dn-2	Dn-1	LOAD	D0	D1	D2		Dn-2	Dn-1	BLANK	D0	D1	D2		Dn-2	Dn-1
Н	_	Н	R0	R1		Rn-2	Rn-1														
L		L	R0	R1		Rn-2	Rn-1														
Х		R0	R1	R2		Rn-1	Rn														
		Х	Х	Х		Х	Х	L	R0	R1	R2		Rn-1	Rn							
		P0	P1	P2		Pn-1	Pn	Н	P0	P1	P2		Pn-1	Pn	L	P0	P1	P2		Pn-1	Pn
									Х	Х	Х		Х	Х	Н	L	L	L		L	L

Table 1. 4-Wire Serial Interface Truth Table

L = Low logic level.

H = High logic level.

X = Don't care.

P = Present state (shift register).

R = Previous state (latched).

clocked in are loaded. Therefore, multiple devices can share CLK and DIN, as long as they have unique LOAD controls.

Determining Driver Output Voltage Drop

The outputs are CMOS drivers, and have a resistive characteristic. The typical and maximum sink and source output resistances can be calculated from the V_H and V_L electrical characteristics. Use this calculated resistance to determine the output voltage drop at different output currents.

Output Current Ratings

The continuous current-source capability is 40mA per output. Outputs may drive up to 75mA as a repetitive peak current, subject to the on-time (output high) being no longer than 1ms, and the duty cycle being such that the output power dissipation is no more than the dissipation for the continuous case. The repetitive peak rating allows outputs to drive a higher current in multiplex grid driver applications, where only one grid is on at a time, and the multiplex time per grid is no more than 1ms.

Since dissipation is proportional to current squared, the maximum current that can be delivered for a given multiplex ratio is given by:

$I_{PEAK} = (grids \times 1600)^{1/2} mA$

where grids is the number of grids in a multiplexed display.

This means that a duplex application (two grids) can use a repetitive peak current of 56.5mA, a triplex (three grids) application can use a repetitive peak current of 69.2mA, and higher multiplex ratios are limited to 75mA.

Paralleling Outputs

Any number of outputs within the same package may be paralleled in order to raise the current drive or reduce the output resistance. Only parallel outputs directly (by shorting outputs together) if the interface control can be guaranteed to set the outputs to the same level. Although the sink output is relatively weak (typically 750 Ω), that resistance is low enough to dissipate 530mW when shorted to an opposite level output at a VBB voltage of only 20V. A safe way to parallel outputs is to use diodes to prevent the outputs from sinking current (Figure 5). Because the diodes also stop the outputs from sinking current from the VFD tube, an external discharge resistor, R, is required. For static tubes, R can be a large value such as $100k\Omega$. For multiplexed tubes, the value of the resistor can be determined by the load capacitance and timing

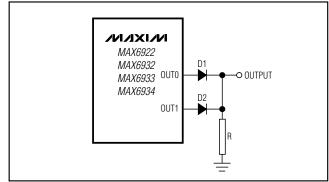


Figure 5. Paralleling Outputs

characteristics required. Resistor R discharges tube capacitance C to 10% of the initial voltage in 2.3 x RC seconds. So, for example, a $15k\Omega$ value for R discharges 100pF tube grid or anode from 40V to 4V in 3.5µs, but draws an additional 2.7mA from the driver when either output is high.

Power Dissipation

Take care to ensure that the maximum package dissipation ratings for the chosen package are not exceeded. Over-dissipation is unlikely to be an issue when driving static tubes, but the peak currents are usually higher for multiplexed tubes. When using multiple driver devices, try to share the average dissipation evenly between the drivers.

Determine the power dissipation (P_D) for the MAX6922/ MAX6932/MAX6933/MAX6934 for static tube drivers with the following equation:

$$P_{D} = (V_{CC} \times I_{CC}) + (V_{BB} \times I_{BB}) + ((V_{BB} - V_{H}) \times I_{ANODE} \times A))$$

where:

A = number of anodes driven (maximum of 32 with the MAX6922/MAX6934).

IANODE = maximum anode current.

 $(V_{BB}$ - $V_{H})$ is the output voltage drop at the given maximum anode current $I_{OUT}.$

A static tube dissipation example follows:

$$V_{CC} = 5V \pm 5\%$$
, $V_{BB} = 10V$ to 18V, $A = 32$, $I_{OUT} = 2mA$
 $P_D = (5.25V \times 1.5mA) + (18V \times 2.2mA) + ((2.5V \times 2mA/25mA) \times 2mA \times 32) = 60mW$

Determine the power dissipation (P_D) for the MAX6922/ MAX6932/MAX6933/MAX6934 for multiplex tube drivers with the following equation:

$$\label{eq:PD} \begin{split} \mathsf{P}_{\mathsf{D}} &= (\mathsf{V}_{\mathsf{CC}} \times \mathsf{I}_{\mathsf{CC}}) + (\mathsf{V}_{\mathsf{BB}} \times \mathsf{I}_{\mathsf{BB}}) + ((\mathsf{V}_{\mathsf{BB}} - \mathsf{V}_{\mathsf{H}}) \times \mathsf{I}_{\mathsf{A}\mathsf{N}\mathsf{O}\mathsf{D}\mathsf{E}} \times \mathsf{A}) + ((\mathsf{V}_{\mathsf{B}\mathsf{B}} - \mathsf{V}_{\mathsf{H}}) \times \mathsf{I}_{\mathsf{G}\mathsf{R}\mathsf{I}\mathsf{D}})) \end{split}$$

where:

A = number of anodes driven.

G = number of grids driven.

IANODE = maximum anode current.

IGRID = maximum grid current.

The calculation presumes all anodes are on, but only one grid is on. The calculated P_D is the worst case, presuming one digit is always being driven with all its anodes lit. Actual P_D can be estimated by multiplying this P_D figure by the actual tube drive duty cycle, taking into account interdigit blanking and any PWM intensity control. A multiplexed tube dissipation example follows:

$$V_{CC} = 5V \pm 5\%$$
, $V_{BB} = 36V$ to 42V, A = 20, G = 12,
IANODE = 0.4mA, IGRID = 24mA

Thus, for a 44-pin PLCC package ($T_{JA} = 1 / 0.0133 = 75.188^{\circ}$ C/W from *Absolute Maximum Ratings*), the maximum allowed ambient temperature T_A is given by:

$$T_{J(MAX)} = T_A + (P_D \times T_{JA}) = +150^{\circ}C = T_A + (0.158 \times 75.188^{\circ}C/W)$$

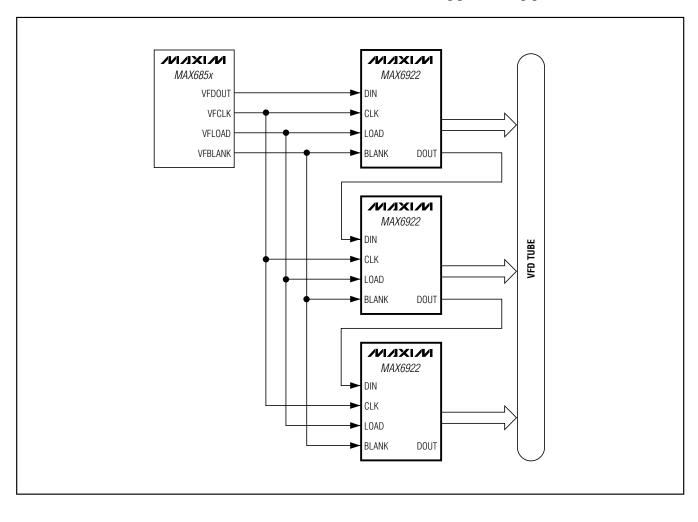
So $T_A = +138^{\circ}C$.

This means that the driver can be operated in this application with a PLCC package up to the +125°C maximum operating temperature.

Power-Supply Considerations

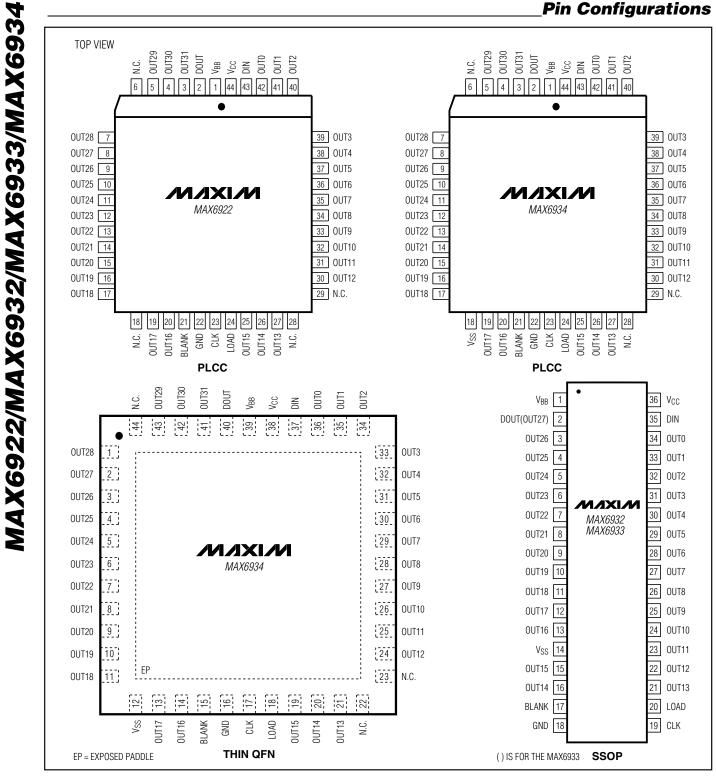
The MAX6922/MAX6932/MAX6933/MAX6934 operate with multiple power-supply voltages. Bypass the V_{CC}, V_{BB}, and V_{SS} (MAX6932/MAX6933/MAX6934 only) power-supply pins to GND with 0.1 μ F capacitors close to the device. The MAX6932/MAX6933/MAX6934 may be operated with V_{SS} tied to GND if a negative bias supply is not required. For multiplex applications, it may be necessary to add an additional bulk electrolytic capacitor of 1 μ F or greater to the V_{BB} supply.

Power-Supply Sequencing

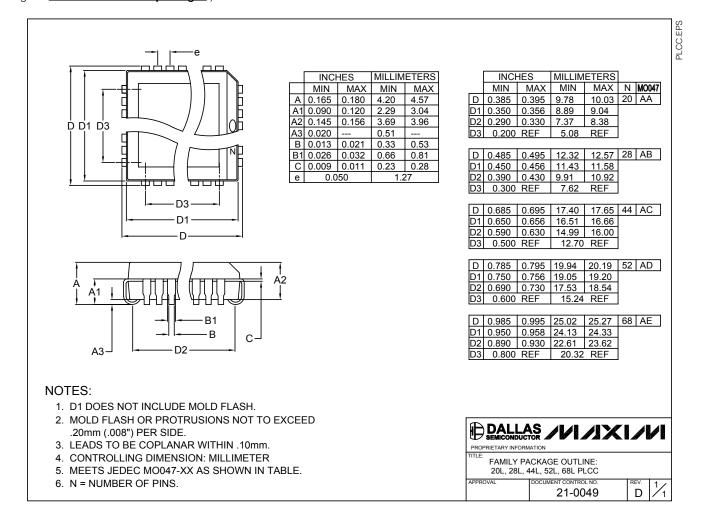

The order of the power-supply sequencing is not important. These ICs are damaged if any combination of V_{CC}, V_{BB}, and V_{SS} is grounded while the other supply or supplies are maintained up to their maximum ratings. However, as with any CMOS device, do not drive the logic inputs if the logic supply V_{CC} is not operational because the input protection diodes clamp the signals.

Cascading Drivers

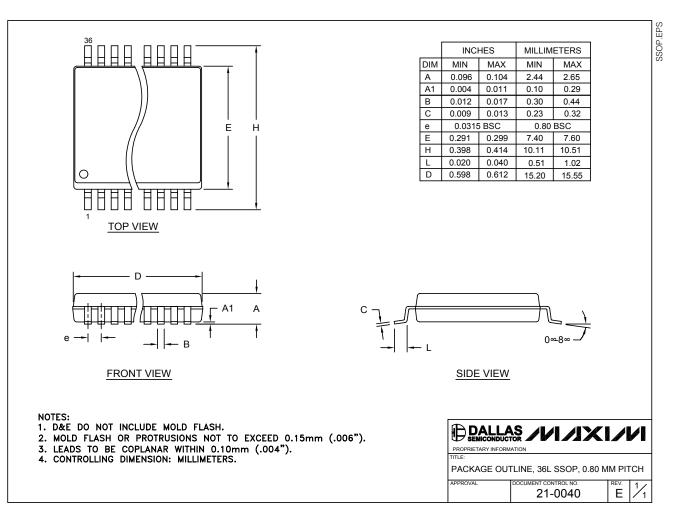
(MAX6922/MAX6932/MAX6934 Only)


Multiple driver ICs may be cascaded, as shown in the *Typical Application Circuit*, by connecting each driver's DOUT to DIN of the next drivers. Devices may be cascaded at the full 5MHz CLK speed when $V_{CC} \ge 4.5V$. When $V_{CC} < 4.5V$, the longer propagation delay (t_{DO}) limits the maximum cascaded CLK to 4MHz.

Typical Application Circuit

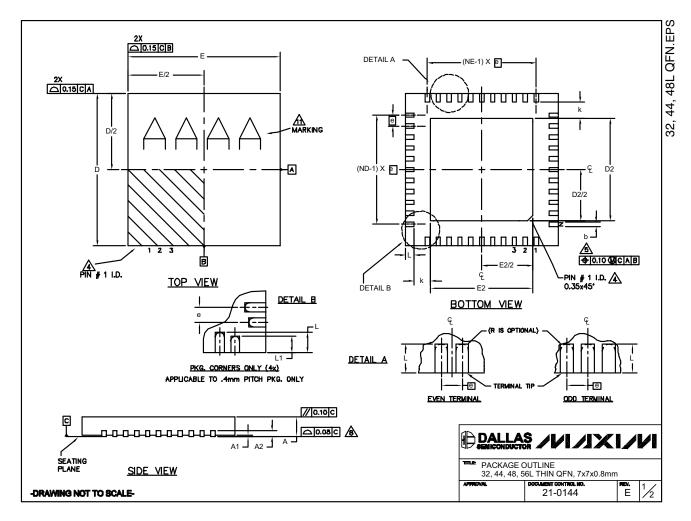

_Chip Information

TRANSISTOR COUNT: 3850 PROCESS: BICMOS MAX6922/MAX6932/MAX6933/MAX6934


_Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

_Package Information (continued)


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)

M/IXI/M

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)

_Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

					CON	IMON E	IMENSI	ons										exposi	ed pai) varia	TIONS				
											TOM P					PKG.	DEPOPULATED		D2			E2		JEDEC MO220	DOWN
PKG		32L 7x	-		4L 7x7	,		IBL 7x	-	1 1	1 4877- 181, 7x7	•		6L 7x	,	CODES	leads	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	REV. C	
SYMBOL		NOM.			NOM.			NOM.	MAX.		NOM.			NOM.		T3277-2	-	4.55	4.70		4.55			-	YES
	-										_					T3277-3	-	4.55	4.70		4.55		4.85	-	NO
A	0.70		0.80	0.70	0.75	0.80	0.70	0.75	0.80		0.75	0.80	0.70	0.75	0.80	T4477-2	-	4.55	4.70		4.55				YES
A1	0		0.05	0	0.02		٥	0.02		0	0.02		٥	-	0.05	T4477-3	- 13,24,37,48	4.55	4.70 4.30	4.85	4.55 4.20	4.70	4.85 4.40	WKKD-1	YES NO
A2	-).20 RE			.20 RE			1.20 R			0.20 RE			.20 RE			13,24,37,40		_	_				-	YES
b	0.25		0.35		0.25		0.20	0.25					0.15			T4877-3 T4877-4	-		5.10		4.95			-	YES
D	6.90			6.90				7.00			7.00	7.10		7.00		T4877-5	_	5.45 2.40	5.60 2.50		5.45 2.40			-	NO NO
E		7.00			7.00			7.00			7.00			7.00		T4877-6	-	5.45	2.30		2.40 5.45	5.60		-	NO
9	-	1.65 BS		-	.50 BS			0.50 B		-).50 BS	<u> </u>		.40 BS		T4877-7	-		5.10			5.10		-	YES
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-		0.35		T5677-1	-	5.20	5.30			5.30		-	YES
L	0.45	0.55	0.65		0.55	0.65	0.30	0.40	0.50	0.45	0.55	0.65		0.50	0.60									•	•
<u></u>	-	-	-	-	-	-	-	-	-	-	-	-	0.30	0.40	0.50										
N		32			- 44			48			44			56		** NOTE: 1						ITH 4	LEADS	s depop	ULATEI
N ND		8			11			12			10			14			14877-1 IS Fotal Numbe					ITH 4	LEADS	6 DEPOP	ULATE
nd Ne																						ITH 4	LEADS	s depop	ULATEI
ND NOTE 1. 2. 3. 4. 6. 7.	DIMER ALL I N IS THE SPP THE DIMEI 0.25 ND A DEPO COPL DRAW	8 8 8 NSIONI DIMENS THE THE THE THE THE THE THE SION SION SION SION SION SION SION SION	SIONS TOTAL NAL # DET INDIC b AP AND E REF TION IS TY API	ARE NUME 1 IDEI CALS CATED. PLIES 0.30 ER TO S POS PLIES RMS 1	11 11 IN MIL DER ON NTIFIEF DF TE THE THE THE SIBLE TO THE SIBLE TO THE	LUMET F TER RMINA TERMI ETALL ROM NUME IN A HE EX DEC M	ERS. MINAL TERN L #1 NAL # IZED IZERNI MER O SYMM POSEI 0220	12 12 12 M TO ANGLE S. MINAL IDENT IDENT IDENT IDENT IF TER IETRIC D HEA EXCE	s are Numb Ifter Ifter Iter Minal Al Fa T Sini	E IN E IERING ARE (IR MA ND IS ND IS S ON SHION < SLU	10 12 5M-19 DEGREE CONN DPTION Y BE MEAS EACH G AS	es. /Entic Mal, B Eithei Ured D An Well	UT MU RAM BETWI NDE S	ALL C JST B JST B JST B SIDE F HE TE	e loc or ma Respec Rmina	n to jesd : Ated Within Rked Featur Ctively.	10TAL NUNBE 95−1 ₹E.	ROF		S ARE	44.				
ND NOTE 1. 2. 3. 4. 5. 7. 9. 9. 10.	DIMER ALL I N IS THE SPP THE DIMEI 0.25 ND A DEPO COPL DRAW	8 8 NSIONI DIMENS THE TERMI OIL2. ZONE NSION ND NI PULAT ANART VING C 77-1/ VAGE S	SIONS TOTAL NAL # DET INDIC b AP AND E REF TON IS TY AP SHALL SHALL 5 FOR	ARE NUME 1 IDEI (AILS I CATED. PLIES 0.30 ER TO S POS PLIES RMS 1 -4/-5 NOT PACK	11 11 TANCH RANCH IN MIL DER O NTIFIEF THE TO M MMM F THE SIBLE TO THE SIBLE TO THE SIBLE TO THE COMPACT AGE C	LUMET FTER RMINA TERMI ETALL ROM NUME IN A HE EX DEC M & T56 D 0.1 RIENT	ERS. MINAL TERI NAL ZED ZED TERNI MER O SYMM POSEI 0220 577-1 0 mm ATION	12 12 12 M TO ANGLE S. MINAL IDENT I	S ARE NUMB IFIER ENTIFIE VAL AI IP, MINAL AL FA T SINI PT TH	E IN I BERING ARE (CR MA ND IS S ON SHION SHION S SLU IE EXF	10 12 55M-112 55M-112 50EGREI	es. /Entic Mal, B Eithei Ured D An Well	UT MU RAM BETWI NDE S	ALL C JST B JST B JST B SIDE F HE TE	e loc or ma Respec Rmina	n to jesd : Ated Within Rked Featur Ctively.	95–1 ₹E.			AS ARE	44.				

Revision History

Pages changed at Rev 2: 1, 2, 3, 16

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2007 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products, Inc.