TC58DVM72A1FT00/ TC58DVM72F1FT00 TC58DAM72A1FT00/ TC58DAM72F1FT00

TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT SILICON GATE CMOS TENTATIVE

128-MBIT (16M \times 8 BITS/8M x 16BITS) CMOS NAND E²PROM DESCRIPTION

The TC58DxM72x1xxxx is a 128-Mbit (138,412,032) bit NAND Electrically Erasable and Programmable Read-Only Memory (NAND E²PROM) organized as 528 bytes/264 words \times 32 pages \times 1024 blocks. The device uses dual power supplies (2.7 V to 3.6 V for V_{CC} and 1.65 V to 1.95 V for V_{CCQ}). The device has a 528-byte/264-words static register which allows program and read data to be transferred between the register and the memory cell array in 528-byte/256-words increments. The Erase operation is implemented in a single block unit (16 Kbytes + 512 bytes: 528 bytes × 32 pages/8k words + 256 words:264 words x 32 pages).

The TC58DxM72x1xxxx is a serial-type memory device which utilizes the I/O pins for both address and data input/output as well as for command inputs. The Erase and Program operations are automatically executed making the device most suitable for applications such as solid-state file storage, voice recording, image file memory for still cameras and other systems which require high-density non-volatile memory data storage.

FEATURES

•	Organization	TC58DxM72A1xxxx	TC58DxM72F1xxxx
	Memory cell allay	$528 \times 32 \mathrm{K} \times 8$	264 x 32k x 16
	Register	528×8	264 x 16
	Page size	528 bytes	264 words
	Block size	(16K + 512) bytes	(8k + 256) words
•	Modes		
	Read, Reset, Auto	Page Program	
	Auto Block Erase,	Status Read	
•	Mode control		
	Serial input/output	5	
	Command control		
•	Power supply	TC58DVM72x1xxxx	TC58DAM72x1xxxx
	Vcc:	2.7V to 3.6V	2.7V to 3.6V
	Vccq:	2.7V to 3.6V	1.65V to $1.95V$
•	Program/Erase Cycle	es 1E5 cycle (with ECC)	
•	Access time		
	Cell array to regis	ster 25 µs max	
	Serial Read Cycle	50 ns min	
•	Operating current		
	Read (50 ns cycle)	10 mA typ.	
	Program (avg.)	10 mA typ.	
	Erase (avg.)	10 mA typ.	
	Standby	50 μA max.	
•	Package	-	
	TSOP I 48-P-1220	-0.50 (Weight:0.53g typ)	

000707EBA1

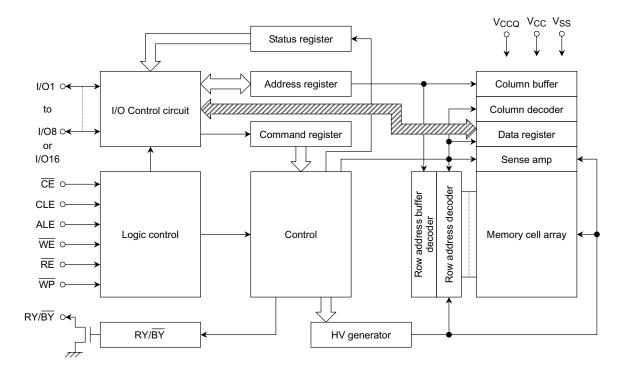
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are equipment, ornice equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

The products described in this document are subject to the foreign exchange and foreign trade laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others

The information contained herein is subject to change without notice.


PIN ASSIGNMENT (TOP VIEW)

		TC58DVM72F1FT00 / TC58DAM72F1	IFT00		
		TC58DVM72A1FT00 / TC58DAM72A1	FT00		
 x16	x8			x8	 x16
NCCCCCDIY NCCCCCCDIY BHEECCCCCCS CLAUEPPCCCCCCC NCCCLUEPPCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	NCCCCCDIYHEECCCCCSSCCHEENSCCCCCC GY RY RY	1 0 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 22 23 24	48 47 46 45 41 40 41 40 41 40 39 38 42 41 40 39 38 37 36 33 31 30 28 31 30 28 27 6 22 25	NCC NO 1/005 1/000	Vss I/O16 I/O8 I/O15 I/O7 I/O14 I/O6 I/O13 I/O5 NC NC NC NC NC NC NC NC NC NC NC I/O12 I/O11 I/O2 I/O10 I/O2 I/O10 I/O3 I/O10 I/O10 I/O10 I/O10 I/O10 I/O10 I/O13 I/O10 I/O13 I/O10 I/O13 I/O10 I/O13 I/O10 I/O13 I/O10 I/O13 I/O10 I/O13 I/O10 I/O13 I/O10 I/O13 I/O10 I/O3 I/O3 I/O3 I/O3 I/O3 I/O3 I/O3 I/O3

PINNAMES

I/O1 to I/O8	I/O port	
I/O9 to I/O16	I/O port (x16)	
CE	Chip enable	
WE	Write enable	
RE	Read enable	
CLE	Command latch enable	
ALE	Address latch enable	
WP	Write protect	
RY/BY	Ready/Busy	
GND	Ground input	
V _{CC}	Power supply	
V _{CCQ}	I/O port Power supply	
V _{SS}	Ground	

TOSHIBA BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

CYMPOL	RATING	VALUE			
SYMBOL	RATING	TC58DVxxxxx	TC58DAxxxx	unit	
V _{CC}	Power Supply Voltage	-0.6~4.6	-0.6~4.6	V	
V _{CCQ}	I/O port Power Supply Voltage	-0.6~4.6	-0.6~2.6	V	
VIN	Input Voltage for Control pins	-0.6~4.6	-0.6~2.6	V	
V _{I/O}	Input/Output Voltage for I/O pins	–0.6 V~V _{CCQ} + 0.3 V (\leq 4.6 V)	$-0.6 \text{ V~V}_{CCQ} + 0.3 \text{ V} (\leq 2.6 \text{ V})$		
PD	Power Dissipation	0.3	0.3	W	
T _{solder}	Soldering Temperature(10s)	260	260	°C	
T _{stg}	Storage Temperature	-55~150	-55~150	°C	
T _{opr}	Operating Temperature	0~70	0~70	°C	

CAPACITANCE *(Ta =25°C, f= 1 MHz)

SYMB0L	PARAMETER	CONDITION	MIN	MAX	UNIT
C _{IN}	Input	$V_{IN} = 0 \ V$	_	10	pF
COUT	Output	$V_{OUT} = 0 \ V$		10	pF

* This parameter is periodically sampled and is not tested for every device.

TOSHIBA VALID BLOCKS (1)

TC58DVM72A1FT00/ TC58DVM72F1FT00 TC58DAM72A1FT00/ TC58DAM72F1FT00

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT
N _{VB} Number of Valid Blocks		1004	_	1024	Blocks

(1) The device occasionally contains unusable blocks. Refer to Application Note (13) toward the end of this document.

(2) The first block (block address #00) is guaranteed to be a valid block at the time of shipment.

RECOMMENDED DC OPERATING CONDITIONS

TC58DVM72A1xxxx,TC58DVM72F1xxxx

SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT
V _{CC}	Power Supply Voltage	2.7	3.3	3.6	V
VCCQ	I/O Port Power Supply Voltage	2.7	3.3	3.6	V
VIH	High Level input Voltage	2.0		$V_{CCQ} + 0.3$	V
VIL	Low Level Input Voltage	-0.3*		0.8	V

* -2 V (pulse width lower than 20 ns)

TC58DAM72A1xxxx,TC58DAM72F1xxxx

SYMBOL	SYMBOL PARAMETER		TYP.	MAX	UNIT
V _{CC}	Power Supply Voltage	2.7	3.3	3.6	V
V _{CCQ}	I/O Port Power Supply Voltage	1.65	1.8	1.95	V
VIH	High Level input Voltage	V _{CCQ} X 0.78		$V_{CCQ} + 0.3$	V
V _{IL}	Low Level Input Voltage	-0.3*	_	V _{CCQ} X 0.22	V

* -2 V (pulse width lower than 20 ns)

<u>DC CHARACTERISTICS</u> (Ta = 0° to 70°C, $V_{CC} = 2.7$ V to 3.6 V)

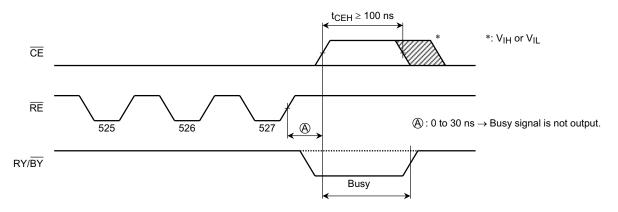
SYMBOL	PARAMETER	CONDITION	MIN	TYP.	MAX	UNIT
IIL	Input Leakage Current	$V_{IN} = 0 V$ to V_{CCQ}	_		±10	μA
ILO	Output Leakage Current	$V_{OUT} = 0 V \text{ to } V_{CCQ}$		_	±10	μA
I _{CCO1}	Operating Current (Serial Read)	$\overline{CE} = V_{IL}, I_{OUT} = 0 \text{ mA}, t_{cycle} = 50 \text{ ns}$		10	30	mA
I _{CCO3}	Operating Current (Command Input)	t _{cycle} = 50 ns	_	10	30	mA
I _{CCO4}	Operating Current (Data Input)	t _{cycle} = 50 ns	_	10	30	mA
I _{CCO5}	Operating Current (Address Input)	t _{cycle} = 50 ns	_	10	30	mA
I _{CCO7}	Programming Current	_	_	10	30	mA
I _{CCO8}	Erasing Current			10	30	mA
I _{CCS1}	Standby Current	$\overline{CE} = V_{IH}, \overline{WP} = 0 V/V_{CCQ}$	_	_	1	mA
I _{CCS2}	Standby Current	$\overline{\text{CE}} = \text{V}_{\text{CCQ}} - 0.2 \text{ V}, \overline{\text{WP}} = 0 \text{ V/V}_{\text{CCQ}}$	_	10	50	μA
V _{OH}	High Level Output Voltage	$I_{OH} = -0.5 \text{ mA}$	V _{CCQ} -0.5	_	_	V
V _{OL}	Low Level Output Voltage	I _{OL} = 2.1 mA		_	0.4	V
I_{OL} (RY/ \overline{BY})	Output Current of RY/BY pin	V _{OL} = 0.4 V		8		mA

TC58DVM72A1FT00/ TC58DVM72F1FT00 TC58DAM72A1FT00/ TC58DAM72F1FT00

AC CHARACTERISTICS AND RECOMMENDED OPERATING CONDITIONS (Ta = 0° to 70°C, V_{CC} = 2.7 V to 3.6 V)

SYMBOL	PARAMETER	MIN	MAX	UNIT	NOTES
tCLS	CLE Setup Time	0	—	ns	
^t CLH	CLE Hold Time	10	_	ns	
t _{CS}	CE Setup Time	0	—	ns	
^t CH	CE Hold Time	10	—	ns	
t _{WP}	Write Pulse Width	25	—	ns	
tALS	ALE Setup Time	0	—	ns	
t _{ALH}	ALE Hold Time	10	—	ns	
t _{DS}	Data Setup Time	20	_	ns	
t _{DH}	Data Hold Time	10		ns	
twc	Write Cycle Time	50	—	ns	
twн	WE High Hold Time	15		ns	
tww	WP High to WE Low	100		ns	
t _{RR}	Ready to RE Falling Edge	20		ns	
t _{RP}	Read Pulse Width	35	—	ns	
t _{RC}	Read Cycle Time	50	_	ns	
t _{REA}	RE Access Time (Serial Data Access)	—	35	ns	
^t CEA	CE Access Time (Serial Data Access,ID Read)	—	45	ns	
^t ALEA	ALE Access Time (ID Read)	_	45	ns	
t _{CEH}	CE High Time for Last Address in Serial Read Cycle	100	_	Ns	(2)
^t REAID	RE Access Time (ID Read)	—	35	ns	
tон	Data Output Hold Time	10	—	ns	
^t RHZ	RE High to Output High Impedance	_	30	ns	
t _{CHZ}	CE High to Output High Impedance	—	20	ns	
t _{REH}	RE High Hold Time	15	_	ns	
t _{IR}	Output-High-impedance-to- RE Falling Edge	0	—	ns	
t _{RSTO}	RE Access Time (Status Read)	_	35	ns	
t _{CSTO}	CE Access Time (Status Read)	—	45	ns	
t _{RHW}	RE High to WE Low	0	_	ns	
^t WHC	WE High to CE Low	30	_	ns	
^t WHR	WE High to RE Low	30	_	ns	
t _R	Memory Cell Array to Starting Address		25	μs	
t _{WB}	WE High to Busy	—	200	ns	
t _{AR2}	ALE Low to RE Low (Read Cycle)	50	_	ns	
t _{RB}	RE Last Clock Rising Edge to Busy(in Sequential Read)		200	ns	
t _{CRY}	CE High to Ready(When interrupted by CE in Read Mode)	_	1+ tr(RY/ BY)	μs	(1)(2)
t _{RST}	Device Reset Time (Read/Program/Erase)		6/10/500	μs	

AC TEST CONDITIONS

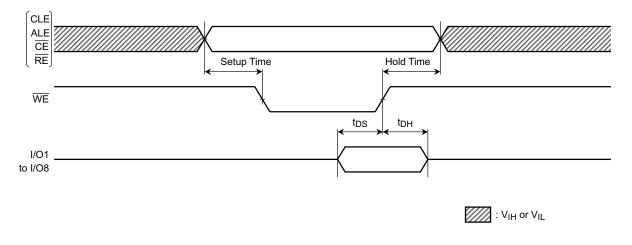

PARAMETER	CONE	DITION
PARAMEIER	TC58DVxxxxx	TC58DAxxxx
Input level	2.4 V, 0.4 V	V _{CCQ} -0.2 V, 0.2 V
Input pulse rise and fall time	3 ns	3 ns
Input comparison level	1.5 V, 1.5 V	0.9 V, 0.9 V
Output data comparison level	1.5 V, 1.5 V	0.9 V, 0.9 V
Output load	C _L (100 pF) + 1 TTL	C _L (30 pF)

<u>TOSHIBA</u>

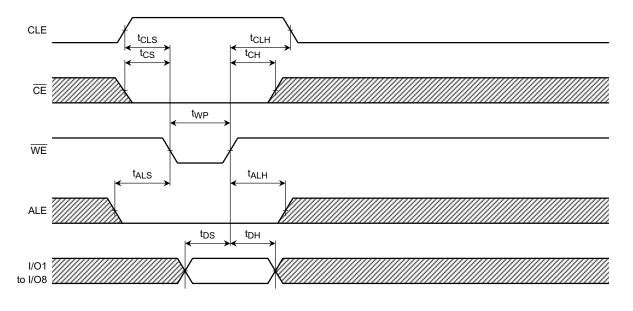
TC58DVM72A1FT00/ TC58DVM72F1FT00 TC58DAM72A1FT00/ TC58DAM72F1FT00

Note: (1) $\overline{\text{CE}}$ High to Ready time depends on the pull-up resistor tied to the RY/ $\overline{\text{BY}}$ pin. (Refer to Application Note (9) toward the end of this document.)

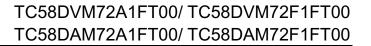
(2) Sequential Read is terminated when t_{CEH} is greater than or equal to 100 ns. If the $\overline{\text{RE}}$ to $\overline{\text{CE}}$ delay is less than 30 ns, $\overline{\text{RY/BY}}$ signal stays Ready.


PROGRAMMING AND ERASING CHARACTERISTICS (Ta =0° to 70°C, V_{CC} = 2.7 V to 3.6 V)

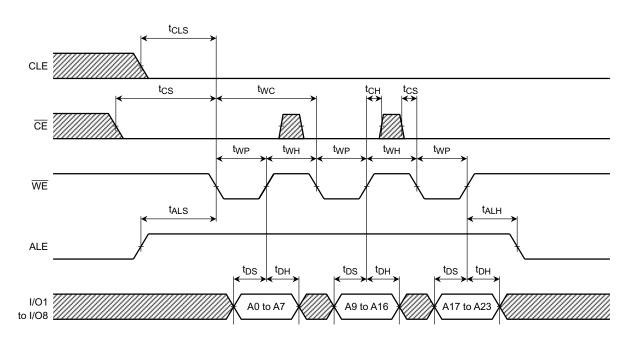
 $x = 0$ to 10° 0, $v_{10} = 2.1^{\circ}$ v to 0.0° v						
SYMBOL	PARAMETER	MIN	TYP.	MAX	UNIT	NOTES
t _{PROG}	Programming Time	_	200	1000	μs	
N	Number of Programming Cycles on Same Page	_	_	3		(1)
t _{BERASE}	Block Erasing Time		2	10	ms	


(1): Refer to Application Note (12) toward the end of this document.

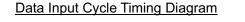
TIMING DIAGRAMS

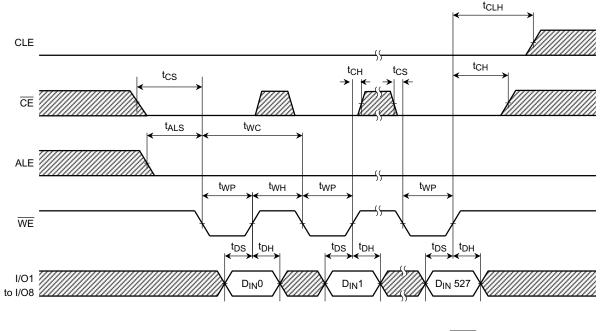

Latch Timing Diagram for Command/Address/Data

Command Input Cycle Timing Diagram



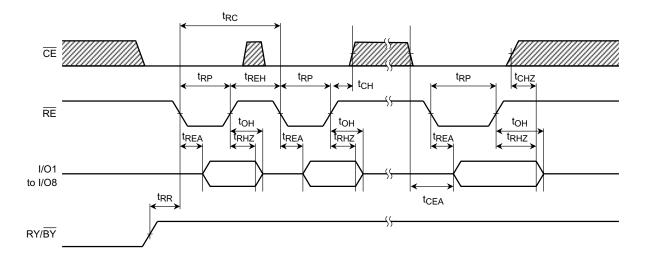
: VIH or VIL




Address Input Cycle Timing Diagram

TOSHIBA

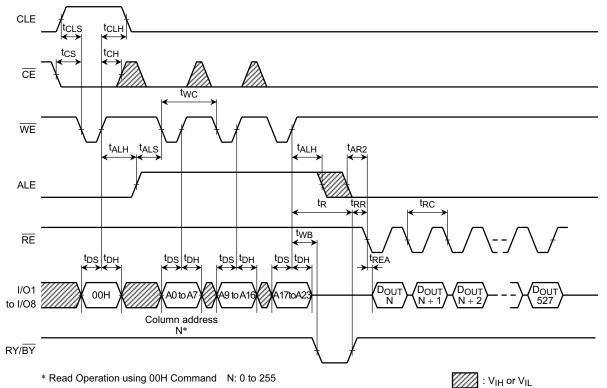
: V_{IH} or V_{IL}



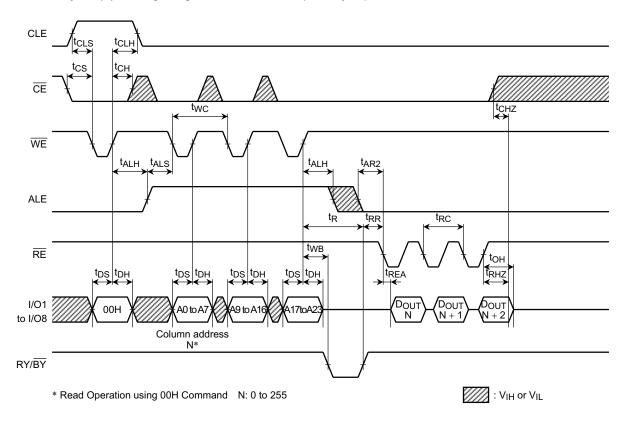

: VIH or VIL

Serial Read Cycle Timing Diagram

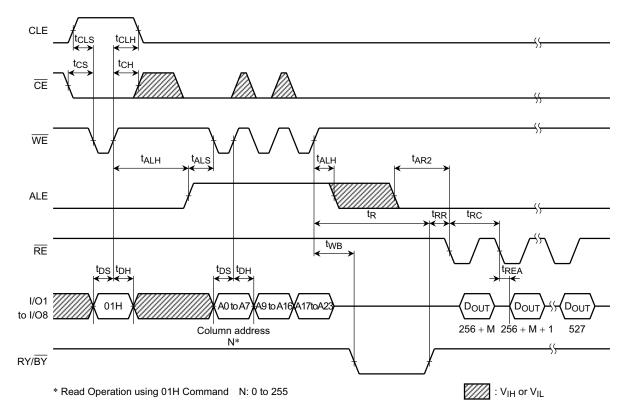
Status Read Cycle Timing Diagram

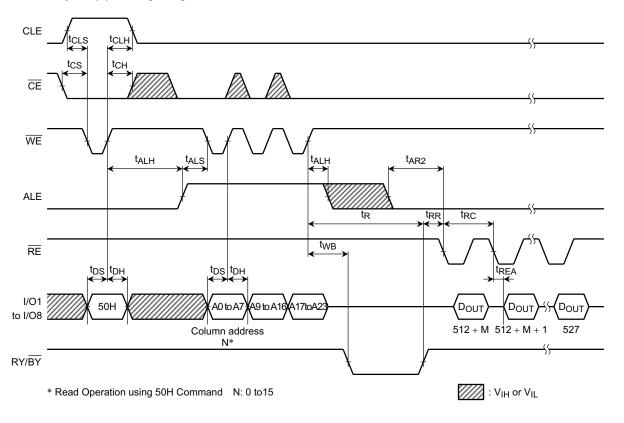


* 70H represents the hexadecimal number


: VIH or VIL

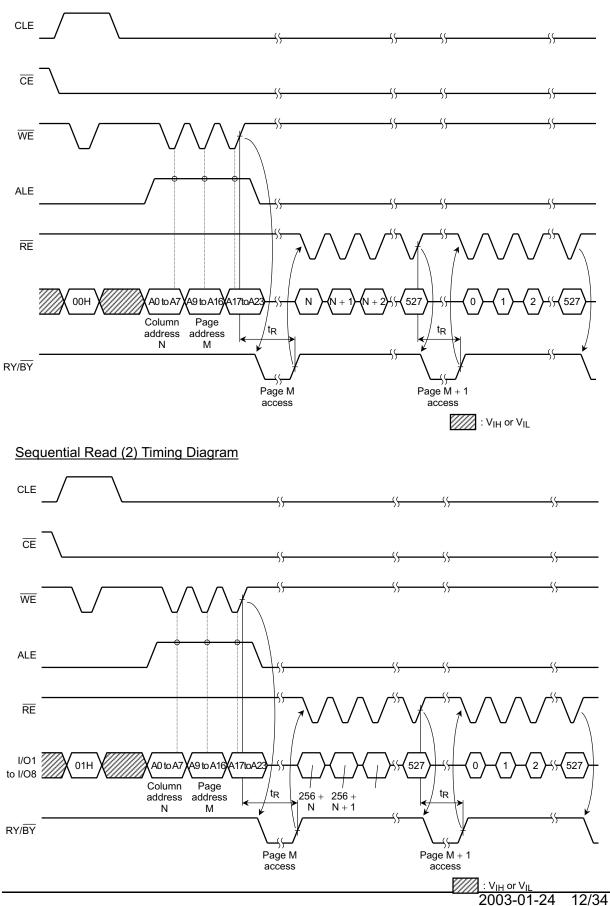
Read Cycle (1) Timing Diagram



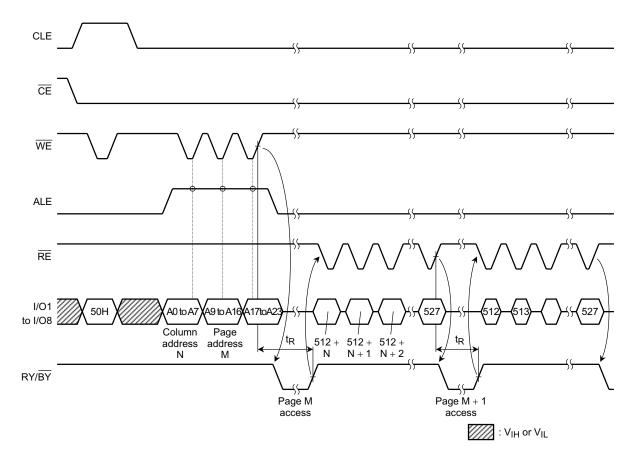

Read Cycle (1) Timing Diagram: When Interrupted by CE

Read Cycle (2) Timing Diagram

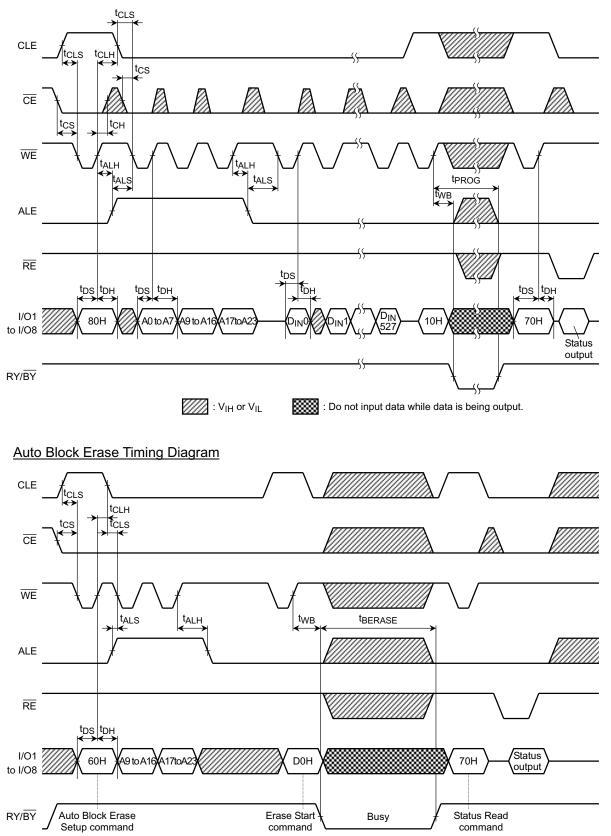
TOSHIBA



Read Cycle (3) Timing Diagram


Sequential Read (1) Timing Diagram

TOSHIBA



Sequential Read (3) Timing Diagram

Auto-Program Operation Timing Diagram

: V_{IH} or V_{IL} : Do not input data while data is being output.

ID Read Operation Timing Diagram

PIN FUNCTIONS

The device is a serial access memory which utilizes time-sharing input of address information. The device pin-outs are configured as shown in Figure 1.

Command Latch Enable: CLE

The CLE input signal is used to control loading of the operation mode command into the internal command register. The command is latched into the command register from the I/O port on the rising edge of the \overline{WE} signal while CLE is High.

Address Latch Enable: ALE

The ALE signal is used to control loading of either address information or input data into the internal address/data register.

Address information is latched on the rising edge of $\overline{WE}\,$ if ALE is High.

Input data is latched if ALE is Low.

Chip Enable: CE

The device goes into a low-power Standby mode when

 $\overline{\text{CE}}$ goes High during a Read operation. The $\overline{\text{CE}}$ signal is ignored when device is in Busy state (RY/ $\overline{\text{BY}}$ = L), such as during a Program or Erase operation, and will not enter Standby mode even if the $\overline{\text{CE}}$ input goes High. The $\overline{\text{CE}}$ signal must stay Low during the Read mode Busy state to ensure that memory array data is correctly transferred to the data register.

Write Enable: WE

The \overline{WE} signal is used to control the acquisition of data from the I/O port.

Read Enable: RE

The \overline{RE} signal controls serial data output. Data is available t_{REA} after the falling edge of \overline{RE} . The internal column address counter is also incremented (Address = Address + 1) on this falling edge.

I/O Port: I/O1 to 8

The I/O1 to 8 pins are used as a port for transferring address, command and input/output data to and from the device.

I/O Port: I/O9 to 16

The I/O9 to 16 pins are used as a port for input/output data to and from the device. The I/O9 to 16 pins are low level(VIL) when address and command are asserted.

Write Protect: WP

The \overline{WP} signal is used to protect the device from accidental programming or erasing. The internal voltage regulator is reset when \overline{WP} is Low. This signal is usually used for protecting the data during the power-on/off sequence when input signals are invalid.

Ready/Busy:RY/BY

The RY/\overline{BY} output signal is used to indicate the operating condition of the device. The RY/\overline{BY} signal is in Busy state ($RY/\overline{BY} = L$) during the Program, Erase and Read operations and will return to Ready state ($RY/\overline{BY} = H$) after completion of the operation. The output buffer for this signal is an open drain.

NC 1	0 48	l Vss
NC 🗆 2	47	I/O16
NC I 3	46	1/08
NC I 4	45	
	44	
	43	
	43	1/014
RE [8	41	1/013
CE 🗆 9	40	.,
NC 🗆 10	39 🗆	
NC 🗆 11	38	
Vcc 4 12	37	Vccq
Vss 🗆 13	36	NC NC
NČ 🗆 14	35	I NC
NC 🗆 15	34	NC I
CLE 🗆 16	33	1/012
ALE C 17	32	
	31	1/011
WP 0 19	30	
	29	1/O10
NC [21	28	1/02
NC 🗆 22	27	1/09
NC 🗆 23	26] I/O1
NC 🗆 24	25] Vss

Figure 1 pinout

<u>TOSHIBA</u>

TC58DVM72A1FT00/ TC58DVM72F1FT00 TC58DAM72A1FT00/ TC58DAM72F1FT00

Schematic Cell Layout and Address Assignment

The Program operation works on page units while the Erase operation works on block units.

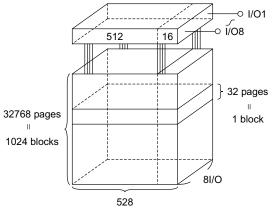


Figure 2. Schematic Cell Layout

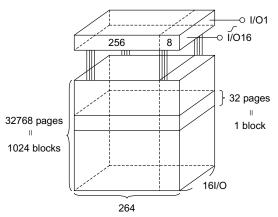


Figure 2-2. x16 Schematic Cell Layout

Table 1. Addressing

	I/O8	I/07	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1
First cycle	A7	A6	A5	A4	A3	A2	A1	A0
Second cycle	A16	A15	A14	A13	A12	A11	A10	A9
Third cycle	*L	A23	A22	A21	A20	A19	A18	A17

A0~A7: Column address A9~A23: Page address (A14~A23: Block address A9~A13: NAND address in block

*: A8 is automatically set to Low or High by a 00H command or a 01H command. I/O9-16 should be low when address is input.

* I/O8 must be set to Low in the third cycle.

A page consists of 528 bytes in which 512 bytes are used for main memory storage and 16 bytes are for redundancy or for other uses.

1 page = 528 bytes

1 block = 528 bytes \times 32 pages = (16K + 512) bytes Capacity = 528 bytes \times 32 pages \times 1024 blocks

A page consists of 264 words in which 256 words are used for main memory storage and 8 words are for redundancy or for other uses.

 $\label{eq:approx} \begin{array}{l} 1 \ page = 264 \ words \\ 1 \ block = 264 \ words \times 32 \ pages = (8K+256) \ words \\ Capacity = 264 \ words \times 32 \ pages \times 1024 \ blocks \end{array}$

An address is read in via the I/O port over three consecutive clock cycles, as shown in Table 1.

Operation Mode: Logic and Command Tables

The operation modes such as Program, Erase, Read and Reset are controlled by the ten different command operations shown in Table 3. Address input, command input and data input/output are controlled by the CLE, ALE, $\overline{\text{CE}}$, $\overline{\text{WE}}$, $\overline{\text{RE}}$ and $\overline{\text{WP}}$ signals, as shown in Table 2.

Table 2. Logic table

	CLE	ALE	CE	WE	RE	WP *1
Command Input	н	L	L		н	*
Address Input	L	н	L		н	*
Data Input	L	L	L		н	н
Serial Data Output	L	L	L	н		*
During Daned (Durau)	*	*	L	н	н	*
During Read (Busy)	*	*	н	*	*	*
During Programming (Busy)	*	*	*	*	*	н
During Erasing (Busy)	*	*	*	*	*	н
Program, Erase Inhibit	*	*	*	*	*	L
Standby	*	*	Н	*	*	0 V/Vcc

H: V_{IH}, L: V_{IL}, *: V_{IH} or V_{IL}

*1: Refer to Application Note (10) toward the end of this document regarding the WP signal when Program or Erase Inhibit

	First Cycle	Second Cycle	Acceptable while Busy					
Serial Data Input	80	_						
Read Mode (1)	00							
Read Mode (2)	01							
Read Mode (3)	50							
Reset	FF		0					
Auto Program	10							
Auto Block Erase	60	D0						
Status Read	70		0					
ID Read	90	_						

Table 3. Command table (HEX)

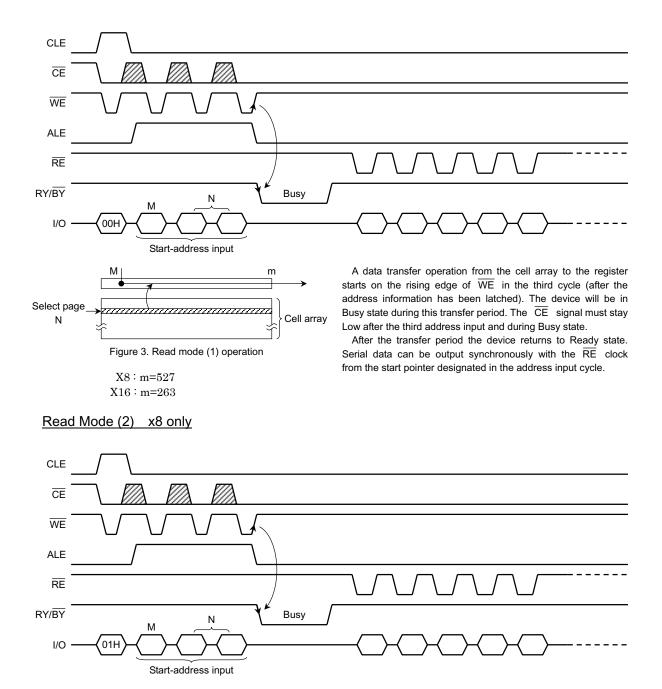
HEX data bit assignment (Example)

	Serial data input: 80H									
1	0	0	0	0	0	0	0			
I/O8	7	6	5	4	3	2	I/O1			
0	0	0	0	0	0	0	0			
I/016	6 15	14	13	12	11	10	I/O9			

01 command isn't implemented by x16.

Table 4 shows the operation states for Read mode.

Table 4. Read mode operation states


	CLE	ALE	CE	WE	RE	I/O1~I/O16	Power
Output Select	L	L	L	н	L	Data output	Active
Output Deselect	L	L	L	Н	Н	High impedance	Active

H: V_{IH}, L: V_{IL}, *: V_{IH} or V_{IL}

DEVICE OPERATION

Read Mode (1)

Read mode (1) is set when a 00H command is issued to the Command register. Refer to Figure 3 below for timing details and the block diagram.

The operation of the device after input of the 01H command is the same as that of Read mode (1). If the start pointer is to be set after column address 256, use Read mode (2).

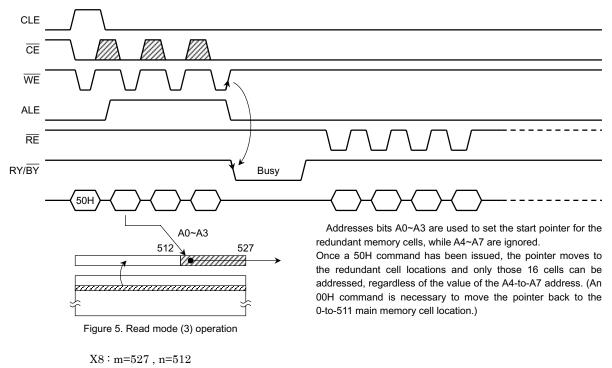
Select page

Ν

256 | M

Figure 4. Read mode (2) operation

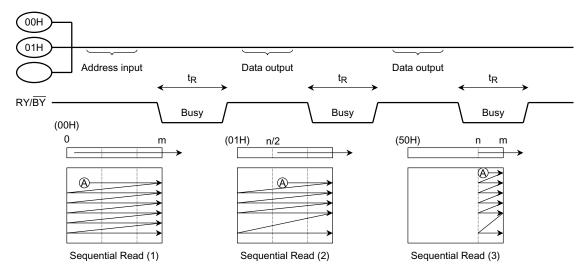
527


Cell array

<u>TOSHIBA</u>

TC58DVM72A1FT00/ TC58DVM72F1FT00 TC58DAM72A1FT00/ TC58DAM72F1FT00

Read Mode (3)


Read mode (3) has the same timing as Read modes (1) and (2) but is used to access information in the extra 16-byte redundancy area of the page. The start pointer is therefore set to a value between byte 512 and byte 527.

X16:m=263, n=256

Sequential Read(1)(2)(3)

This mode allows the sequential reading of pages without additional address input.

Sequential Read modes (1) and (2) output the contents of addresses $0 \sim m$ as shown above, while Sequential Read mode (3) outputs the contents of the redundant address locations only. When the pointer reaches the last address, the device continues to output the data from this address ** on each $\overline{\text{RE}}$ clock signal.

X8: m=527,n=512

X16:m=263,n=256

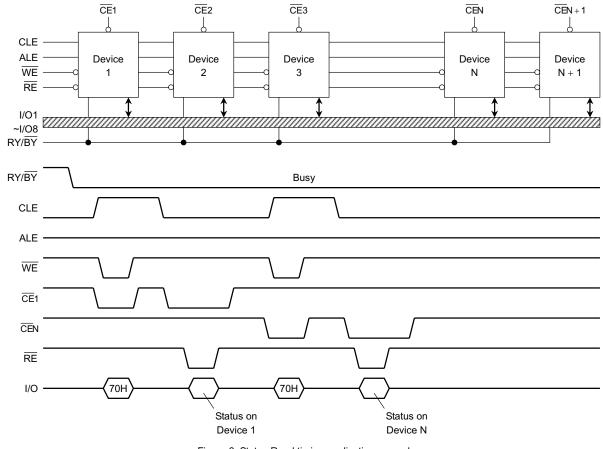
TOSHIBA Status Read

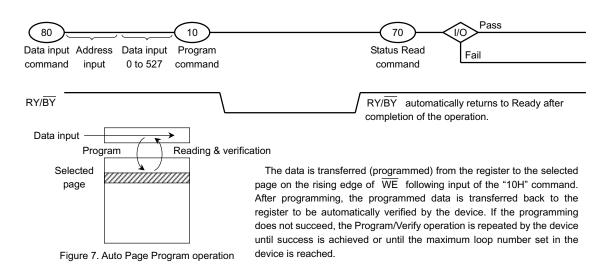
The device automatically implements the execution and verification of the Program and Erase operations. The Status Read function is used to monitor the Ready/Busy status of the device, determine the result (pass/fail) of a Program or Erase operation, and determine whether the device is in Protect mode. The device status is output via the I/O port on the $\overline{\text{RE}}$ clock after a 70H command input. The resulting information is outlined in Table 5.

	STATUS		OUTPUT	
I/O1	Pass/Fail	Pass: 0	Fail: 1	
I/O2	Not Used	0		
I/O3	Not Used	0		
I/O4	Not Used	0		The Pass/Fail status on I/O1 is only valid when the device is in the Ready
I/O5	Not Used	0		state.
I/O6	Not Used	0		
I/O7	Ready/Busy	Ready: 1	Busy: 0	
I/O8	Write Protect	Protect: 0	Not Protected: 1	
I/O9 to I/O16	Not Used	0		

Table 5. Status output table

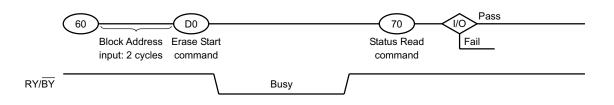
An application example with multiple devices is shown in Figure 6.




Figure 6. Status Read timing application example

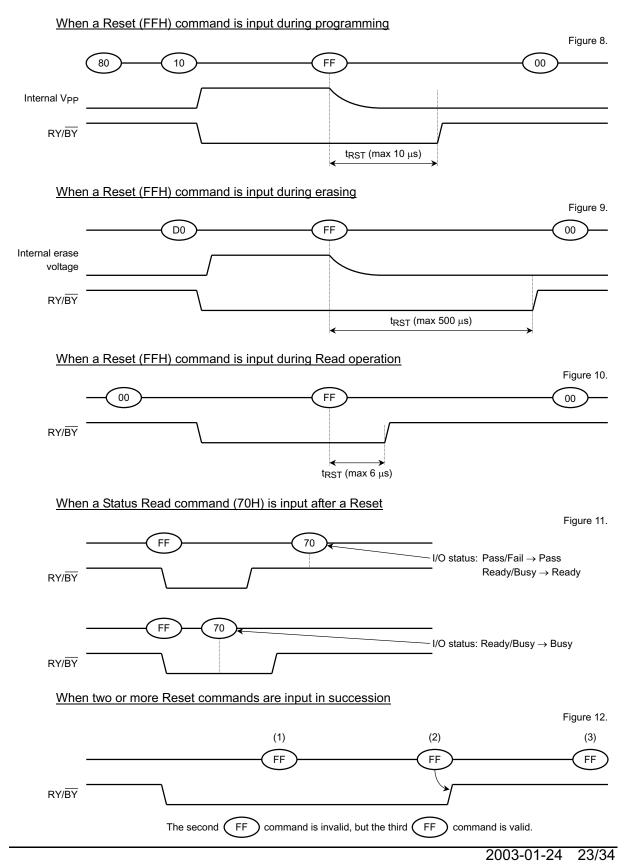
System Design Note: If the RY/\overline{BY} pin signals from multiple devices are wired together as shown in the diagram, the Status Read function can be used to determine the status of each individual device.

TC58DVM72A1FT00/ TC58DVM72F1FT00 TC58DAM72A1FT00/ TC58DAM72F1FT00


Auto Page Program

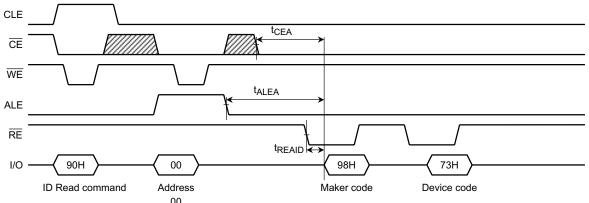
The device carries out an Automatic Page Program operation when it receives a "10H" Program command after the address and data have been input. The sequence of command, address and data input is shown below. (Refer to the detailed timing chart.)

Auto Block Erase


The Auto Block Erase operation starts on the rising edge of $\overline{\text{WE}}$ after the Erase Start command "DOH" which follows the Erase Setup command "60H". This two-cycle process for Erase operations acts as an ertra layer of protection from accidental erasure of data due to external noise. The device automatically executes the Erase and Verify operations.

TOSHIBA Reset

The Reset mode stops all operations. For example, in the case of a Program or Erase operation the internally generated voltage is discharged to 0 volts and the device enters Wait state.


The response to an "FFH" Reset command input during the various device operations is as follows:

TC58DVM72A1FT00/ TC58DVM72F1FT00 TC58DAM72A1FT00/ TC58DAM72F1FT00

ID Read

The device contains ID codes which identify the device type and the manufacturer. The ID codes can be read out under the following timing conditions:

\$00\$ For the specifications of the access times $t_{REAID},\,t_{CR}$ and t_{AR1} refer to the AC Characteristics.

Figure 13. ID Read timing

Table 6. ID Codes read out by	v ID read command 90H

	I/O8	I/O7	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	Hex Data
Maker code	1	0	0	1	1	0	0	0	98H
Device code	0	1	1	1	0	0	1	1	73H

I/O9 to I/O16 are "0".

TC58DVM72A1FT00/ TC58DVM72F1FT00 **TOSHIBA** TC58DAM72A1FT00/ TC58DAM72F1FT00 <u>APPLICATION NOTES AND COMMENTS</u>

(1) Power-on/off sequence:

The \overline{WP} signal is useful for protecting against data corruption at power-on/off. The following timing sequence is necessary.

The \overline{WP} signal may be negated any time after the V_{CC} reaches 2.5 V and \overline{CE} signal is kept high in power up sequence. 2.7 V ______

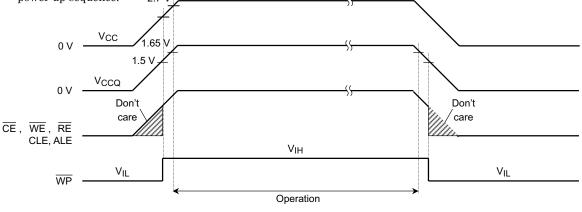
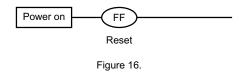



Figure 15. Power-on/off Sequence

In order to operate this device stably, after V_{CC} becomes 2.5 V and V_{CCQ} becomes 1.5V, it recommends starting access after about $200 \ \mu s$.

(2) Status after power-on

The following sequence is necessary because some input signals may not be stable at power-on.

(3) Prohibition of unspecified commands

The operation commands are listed in Table 3. Input of a command other than those specified in Table 3 is prohibited. Stored data may be corrupted if an unknown command is entered during the command cycle.

(4) Restriction of command while Busy state

During Busy state, do not input any command except 70H and FFH.

(5) Acceptable commands after Serial Input command "80H"

Once the Serial Input command "80H" has been input, do not input any command other than the Program Execution command "10H" or the Reset command "FFH".

If a command other than "10H" or "FFH" is input, the Program operation is not performed.

Programming cannot be executed.

80 XX 10

For this operation the "FFH" command is needed.

Command other than "10H" or "FFH"

(6) Addressing for program operation

Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most significant bit) page of the block. Random page address programming is prohibited.

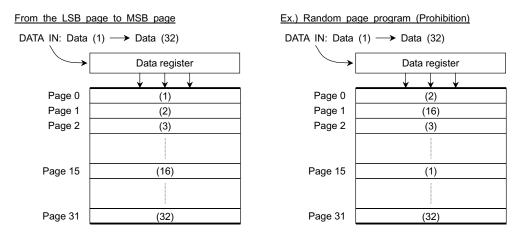


Figure 17. page programming within a block

(7) Status Read during a Read operation

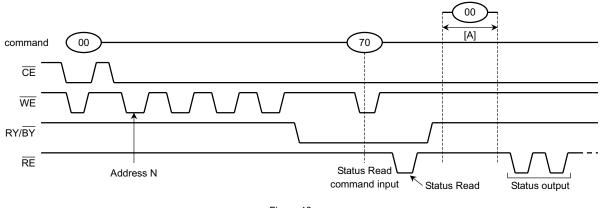
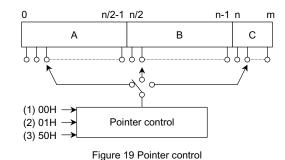


Figure 18.

The device status can be read out by inputting the Status Read command "70H" in Read mode.

Once the device has been set to Status Read mode by a "70H" command, the device will not return to Read mode.

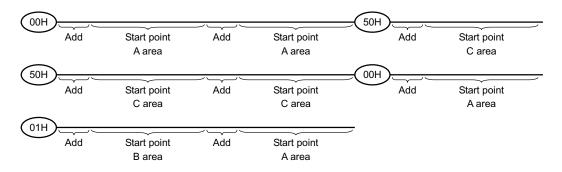
Therefore, a Status Read during a Read operation is prohibited.


However, when the Read command "00H" is input during [A], Status mode is reset and the device returns to Read mode. In this case, data output starts automatically from address N and address input is unnecessary

(8) Pointer control for "00H", "01H" and "50H"

Table 8. Pointer Destination

The device has three Read modes which set the destination of the pointer. Table 8 shows the destination of the pointer, and Figure 19 is a block diagram of their operations.


Read Mode	Command	Poi	nter
Read Mode	Command	(x8)	(x16)
(1)	00H	0~255	0~255
(2)	01H	256~511	
(3)	50H	512~527	256~263

The pointer is set to region A by the "00H" command, to region B by the "01H" command, and to region C by the "50H" command.

(Example)

The "00H" command must be input to set the pointer back to region A when the pointer is pointing to region C.

To program region C only, set the start point to region C using the 50H command.

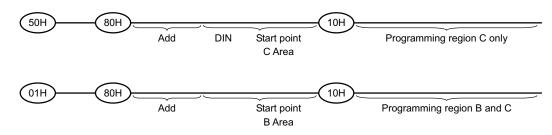
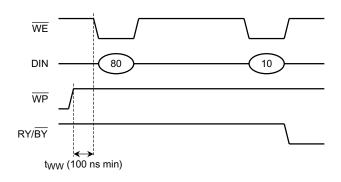
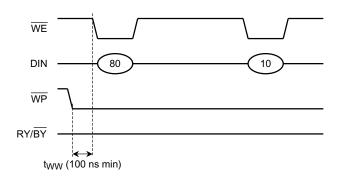


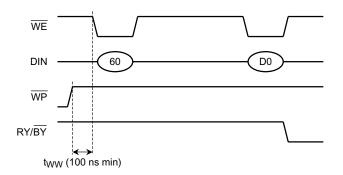
Figure 20. Example of How to Set the Pointer

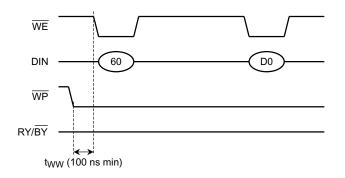
(9) RY/\overline{BY} : termination for the Ready/Busy pin (RY/\overline{BY})


A pull-up resistor needs to be used for termination because the $\rm RY/\overline{BY}$ buffer consists of an open drain circuit. $\rm DIN$

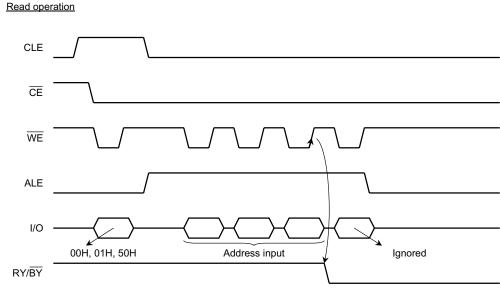

(10) Note regarding the \overline{WP} signal

The Erase and Program operations are automatically reset when \overline{WP} goes Low. The operations are enabled and disabled as follows:


Enable Programming


Disable Programming

Enable Erasing


Disable Erasing

TC58DVM72A1FT00/ TC58DVM72F1FT00 TC58DAM72A1FT00/ TC58DAM72F1FT00

(11) When four address cycles are input

Although the device may read in a fourth address, it is ignored inside the chip.

Internal read operation starts when $\overline{\text{WE}}$ goes High in the third cycle.

Figure 22.

Program operation

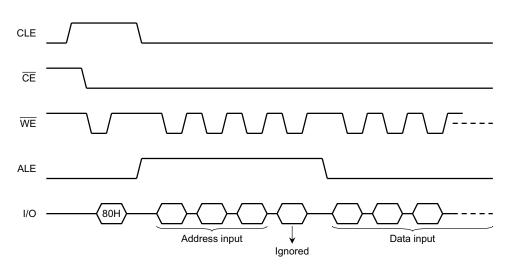


Figure 23.

TC58DVM72A1FT00/ TC58DVM72F1FT00 TC58DAM72A1FT00/ TC58DAM72F1FT00

(12) Several programming cycles on the same page (Partial Page Program)

A page can be divided into up to 3 segments. Each segment can be programmed individually as follows:

1st programming	Data Pattern 1		All 1s	
2nd programming	All 1s	Data Pattern 2	All 1s	
3rd programming		Data Pattern 3		
Result	Data Pattern 1	Data Pattern 2	 	Data Pattern 3

Note: The input data for unprogrammed or previously programmed page segments must be "1"

Figure 24.

(13) Invalid blocks (bad blocks)

The device contains unusable blocks. Therefore, at the time of use, please check whether a block is bad and do not use these bad blocks.

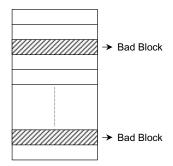
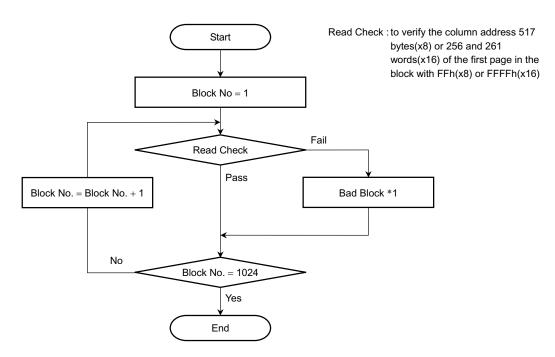


Figure 26.

At the time of shipment, all data bytes in a Valid Block are FFh(x8) or FFFFh(x16). For Bad Block, all bytes are not in the FFh state(x8) or FFFFh state(x16). Please don't perform erase operation to Bad Block.


Check if the device has any bad blocks after installation into the system. Figure 27 shows the test flow for bad block detection. Bad blocks which are detected by the test flow must be managed as unusable blocks by the system.

A bad block does not affect the performance of good blocks because it is isolated from the Bit line by the Select gate

The number of valid blocks at the time of shipment is as follows:

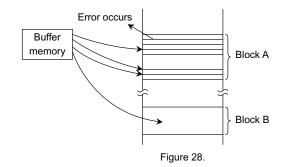
	MIN	TYP.	MAX	UNIT
Valid (Good) Block Number	1004		1024	Block

Bad Block Test Flow

*1: No erase operation is allowed to detected bad blocks

Figure 27

TC58DVM72A1FT00/ TC58DVM72F1FT00 TC58DAM72A1FT00/ TC58DAM72F1FT00


(14) Failure phenomena for Program and Erase operations

The device may fail during a Program or Erase operation. The following possible failure modes should be considered when implementing a highly reliable system.

FAILURE MODE		DETECTION AND COUNTERMEASURE SEQUENCE
Block	Erase Failure	Status Read after Erase \rightarrow Block Replacement
Page	Programming Failure	Status Read after Program \rightarrow Block Replacement
Single Bit	Programming Failure $1 \rightarrow 0$	(1) Block Verify after Program \rightarrow Retry
		(2) ECC

- ECC: Error Correction Code
- Block Replacement

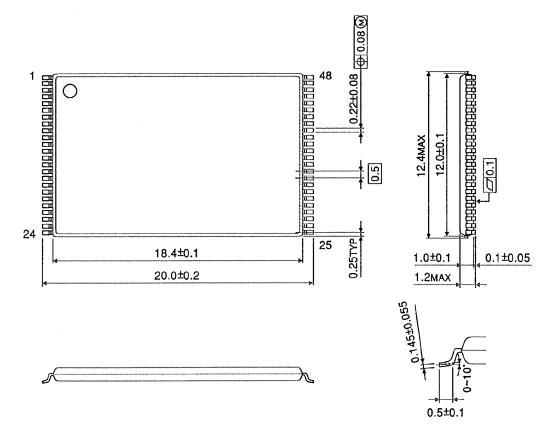
Program

When an error happens in Block A, try to reprogram the data into another Block (Block B) by loading from an external buffer. Then, prevent further system accesses to Block A (by creating a bad block table or by using an another appropriate scheme).

Erase

When an error occurs in an Erase operation, prevent future accesses to this bad block (again by creating a table within the system or by using another appropriate scheme).

(15) Do not turn off the power before write/erase operation is complete. Avoid using the device when the battery is low. Power shoetage and/or power failure before write/erase operation is complete will cause loss of data and/or damage to data.


TOSHIBA Package Dimensions

TC58DVM72A1FT00/ TC58DVM72F1FT00 TC58DAM72A1FT00/ TC58DAM72F1FT00

TSOPI48-P-1220-0.50

Unit : mm

Weight: 0.53g (typ.)