Pro Audio & Broadcast Catalog Sixth Edition

Switcheraft.com

Patchbays, Patchcords & Molded Cable Assemblies

Connectors and Adapters

Jacks and Plugs

Guitar Switches

About Switchcraft, Inc.

Switchcraft, Inc. was established in 1946 to manufacture jacks, plugs, and switches. We have since become the industry leader in producing a wide variety of connectors, adapters, jacks and plugs, patchbays, jackfields, and switches. While our products cover a diverse number of markets, this catalog focuses on our line of audio and video products, typically found in broadcast, recording, sound reinforcement, and other pro audio applications.

Some of the new products you'll find in this catalog include our EZ Norm Series of audio patchbays, where normal configurations can be changed from the front of the patchbay, using a standard screwdriver. Also found in this edition are new combination audio/video patchbays in both standard/long-frame and midsize/bantam styles. In the connector section, we're offering a new line of connectors called our EH Series, incorporating a wide range of connectors (Firewire, USB, Category 6, BNC, RCA, and more) in a standard XLR housing.

Please keep in mind that this is just a small sampling of our complete product lines. For more detailed information, we offer our "full line" catalog, our Engineering Design Guide.

Our Engineering Design Guide includes over 5,000 part numbers covering all five major product lines. If you don't see it here, chances are you'll find it in the EDG. And again, keep in mind that the EDG is also just a "snapshot" of our capabilities. We manufacture over 30,000 part numbers, so if it's not in the EDG, please contact us with your requirements. To keep up on all the new products we have to offer, visit our website at **www.switchcraft.com** and look for the New Product Showcase. **Patchbay Series** 4 - 43Patchcords/Molded Cables 44 - 45 **Connector Series** 46 - 62 63 - 64 Audio Adapter Series Jack Series <u>65 - 82</u> Plug Series 83 - 93 Switch Series 94 - 96 Index *98 – 100* **Detailed Table of Contents — Pages 2 - 3**

Table of Contents

Patchbays

2

Professional Punchdown Terminal (PPT)	4
Audio Patchbay Series	5–33
MTPH/TTPH Harness Series	5-7
Front Access Series	8–9
EZ Norm Patchbay Series	10–11
RS 422 Data Patchbay Series	12–13
MTP48K Wired Series	14–15
TTPW96K Wired Series	16–17
MTPBP/TTPBP Backpanel Series	18–19
TT96 EDAC Series	20–21
TTP96K Patchkit Series	22–23
MT48K/MT52K Patchkit Series	24–25
MT48/MT52 Patchbay Series	26–27
TTP96AS Patchbay Series	28–29
HPC Patchbay Series	30–31
Q-G [®] Patchbay Series	32–33
Video/Audio Patchbay Series	34–44
VPP Video Patchbay Series	34–36
MVP Midsize Video Patchbay Series	37–39
VAP Video/Audio Patchbay Series	40–41
MVEZN Audio/Midsize Patchbay Series	42
MBPK Video/Audio Patchbay Series	43
Audio and Video Patchcords	44–45

Connectors

Q-G® Audio Connector Series	46-48
A, AA, AAA Cord Style Series	46
B, C, D, E Panel Style Series	47
J, K, P, R, T Wallplate, Gooseneck,	
Panel & Cord Style Series	48
Tini-Q-G® Connector Series	49
Tini-Q-G® Cord & Panel Style Series	49
HPC Connector Series	50-51
HPC Panel Style Series	50
HPC Cord, & Adapter Style Series	51
EH Series Receptacles	52
MIDI and 2500 Series	53
HP75BNC Series	54
Connector Dimension Drawings	55–62
HP75BNC Series, EH Series	55
Q-G Audio - A, AA, AAA Series	56
Q-G Audio - B, C, D, E Series	57
Q-G Audio - J, K, P, R Series	58
Q-G Audio - T Series	59
MIDI, Q-G Audio - P Series	60
HPC Panel Style Series	61–62

Audio Adapters

XLR to XLR, RCA, 1/4", TQ-G Adapter Series63
1/4" to 1/4", RCA; RCA to RCA;
& Miscellaneous Adapter Series64

Table of Contents

3

Jacks & Plugs

Jack Series

	Littel Phone, Hi-D, Right Angle PC Mount 1/4", 1/4	4"
	Extension Jack Series	65
	Thick Panel/Guitar, Locking 1/4", Tini, Tini-	
	Extension, Micro, 3.5mm	67
	Phono, Phono Extension, TT or Bantam, MT 1/4"	
	Jack Series	69
P	ower/Jacks Plugs Series – 700, S700,	
	800 Cord & Panel Style Series	71
J	ack Series Dimension Drawings72-	-82
	Littel Phone, Hi-D, 1/4" Extension, 700 Panel Jack	<
	Series	72
	Littel Phone, Hi-D, 1/4" Extension Jack Series	73
	Right Angle PC Mount 1/4" Jack Series	74
	Thick Panel/Guitar, Locking 1/4″, Tini, Tini	
	Extension Jack Series	75
	Micro, 3.5mm Jack Series	76
	3.5mm Jack Series77-	79
	Phono and Phono Extension Jack Series	80
	TT or Bantam Jack Series	81
	MT 1/4" Jack Series	.82

Plug Series

	Littel 1/4", Right Angle 1/4", Silent, Super Heavy	
	Duty Plug Series	83
	Tini, Micro, 3.5mm Stereo, Right Angle 3.5mm	
	Stereo, Phono, Right Angle Phono Plugs Series	85
	TT or Bantam, Mil-Style 1/4" Plugs Series	87
Ρ	lug Series Dimension Drawings88–	93
	Littel Plug 1/4" Series	88

Littel Right Angle 1/4", Silent, Super	
Heavy Duty Plug Series	39
Tini, Micro Plug Series	90
35HD 3.5mm Stereo Plug Series	91
Phono and Phone Right Angle Plug Series	92
TT or Bantam, Mil-Style 1/4" Plug Series	93

Switches

Switch Series	94–95
Switch Series Dimension Drawings	96

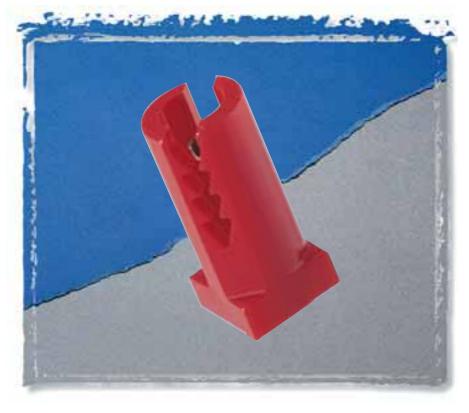
Limited Lifetime Warranty

Switchcraft warrants all of its products to be of sound design, good materials and workmanship at the time of manufacture.

Switchcraft will repair or replace at its discretion any product proven to be defective under normal use.

Switchcraft's liability under the terms of this warranty is limited to the repair or replacement of defective products which have not been damaged through accident, abuse, misuse or unauthorized repair. Switchcraft shall in no case be liable for special or consequential damages of any nature.

(R)


www.s

4 Our Patchbays Now Feature the New Professional Punchdown Terminal (PPT)

Our Patchbays Have Just Rounded A New Corner

Actually, the corners we rounded belong to our patchbays' revolutionary, new Professional Punchdown Terminal (PPT), making it perfectly compatible with the industry standard. We realized that achieving a new industry standard meant we couldn't cut any corners to get there.

The PPT design incorporates a split-barrel design and a more rugged, thicker housing to minimize the impact of repeated punchdowns. The split-barrel design eliminates the problems associated with the old "V-shaped" terminal designs. The PPT design distributes pressure evenly across both sides of the terminated wire, causing improved wire retention plus more reliable connections. The serrated teeth in the plastic housing firmly grip the wires, which also greatly improves wire retention. With the PPT, multiple wires can be terminated to a single contact, and a wide range of wire gauges can be used.

Look for Switchcraft's PPT in our MTP and TTP Series of audio patchbays, and in our new Backpanel Series. All Switchcraft audio patchbays incorporate heavy gauge materials and our high quality nickel-plated, steel framed jacks. Gold-plated, crossbar contacts come standard!

Materials

Housing: Thermoplastic (UL 94V-0) Contacts: High strength copper alloy, tin plated Wire size: Accommodates #22, 24, or 26 AWG, stranded or solid

Accessories

Part Number	Description	
K459	PPT replacement kit consists of 15 of each color* (IDC/IDC)	
K460	PPT replacement kit consists of 15 of each color (IDC/wirewrap)	
PT1LA	PPT impact punchdown tool	
PT2B	Replacement bit for PT1LA tool	
*Colors consist of red black white vellow blue and		

*Colors consist of red, black, white, yellow, blue, and orange.

MTPH/TTPH Harness Series

• Units feature either 48 MT style jacks or 96 TT style jacks on the front panels, to a 4 foot harness, out to a backpanel with PPT's

AES / EBU Digital Ready

- All versions utilize AES/EBU wiring for complete digital compatibility
- Attractive, corrosion resistant nickel-plated, steel frame jacks
- Gold-plated switching contacts reduce contact resistance, improve reliability

Specifications

Materials

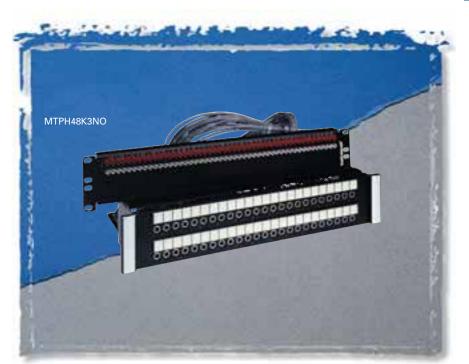
Jacks

- Frame: Nickel-plated steel
- Bushing: Nickel-plated brass Tip, Ring and Shunt Springs: Nickel silver with welded
- contacts Assembly Screws: Zinc-plated steel
- Welded Contacts: Gold alloy

Panel

Front Channel: Black anodized aluminum Frame: C.R.S. black epoxy painted Designation Strips: Black

polycarbonate 94V-0 Designation Strip Covers: Clear


polycarbonate Jack Inserts: Thermoplastic polyester

Mechanical

Life: 30,000 cycles Insertion Force: 7 lbs. maximum Withdrawal Force: 1 lb. minimum Environmental: 0°C to +50°C

Electrical

Contact Resistance: 30 milliohms maximum initial Insulation Resistance: 10,000 megohms maximum Dielectric Withstanding Voltage: 500 VAC at 60 Hz Working Voltage: 140 VDC maximum Current Rating: 100 milliamps

The MTPH and TTPH Harness Series utilize standard front panel assemblies, a 4-foot cable harness, and our standard back panel assemblies. Primarily used where the back panels must either be mounted into a rack, or brought back to the front for easier access. Custom cable lengths can also be supplied. Contact the factory for details.

Ordering Information

Part Number	Type of Jack	No. of Jacks	Description
MTPH48K1NS	MT	48	1.75" High front panel, 4' Harness, 3.5" High back panel, normals strapped
MTPH48K1NO	MT	48	1.75" High front panel, 4' Harness, 3.5" High back panel, normals brought out
MTPH48K3NS	MT	48	3.5" High front panel, 4' Harness, 3.5" High back panel, normals strapped
MTPH48K3NO	MT	48	3.5" High front panel, 4' Harness, 3.5" High back panel, normals brought out
MTPH48K3SNO	MT	48	3.5" High front panel, 4' Harness, 3.5" High back panel, sleeve normals brought out
TTPH96K1NS	TT	96	1.75" High front panel, 4' Harness, 3.5" High back panel, normals strapped
TTPH96K1NO	TT	96	1.75" High front panel, 4' Harness, 5.25" High back panel, normals brought out
TTPH96K3NS	TT	96	3.5" High front panel, 4' Harness, 3.5" High back panel, normals strapped
TTPH96K3NO	TT	96	3.5" High front panel, 4' Harness, 5.25" High back panel, normals brought out

See Next Page for Mechanical Drawings

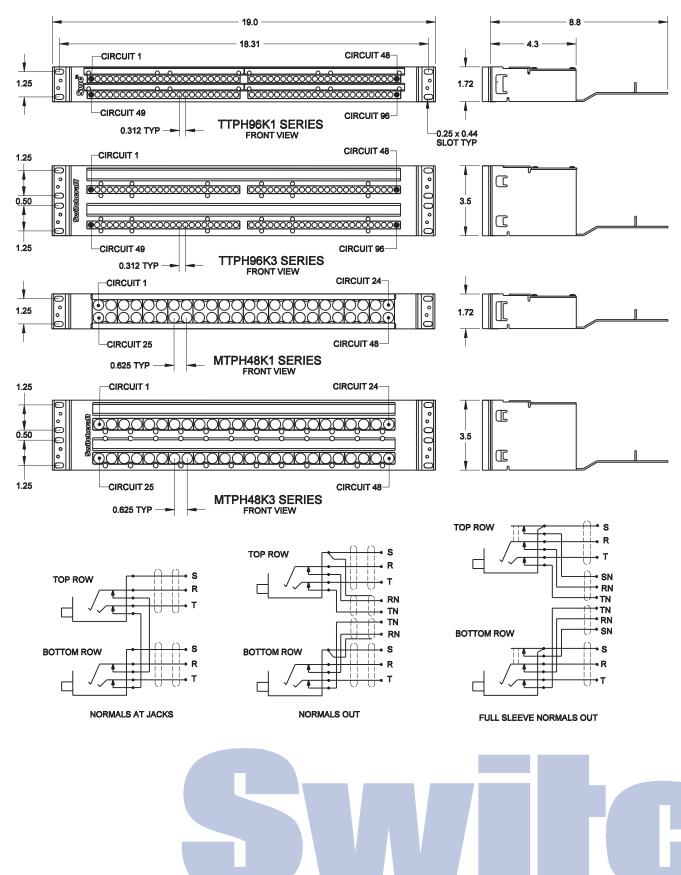
c o m

a f t

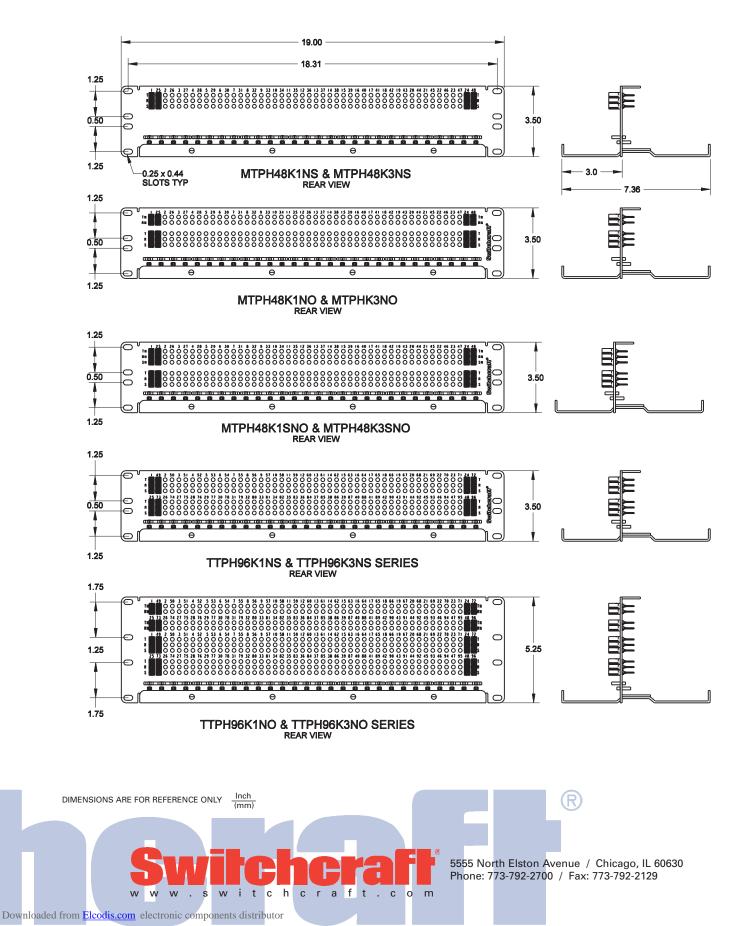
c r

5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129

(R)


w w

. S


witch

6

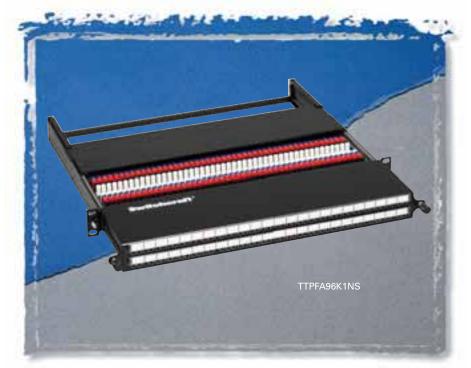
MTPH/TTPH Harness Series

8 Front Access Series

Features and Benefits

- Easy slide-out tray slides forward for easy re-termination from the front of the rack
- Available with either 48 MT style or 96 TT style jacks in a 1RU space
- Attractive, corrosion resistant nickel-plated, steel frame jacks
- Gold-plated switching contacts reduce contact resistance, improves reliability
- Extra wide designation strips for easy channel identification
- Rugged, attractive black epoxy-finished steel chassis
- Configurations available include normals strapped and normals brought out

Specifications


Materials

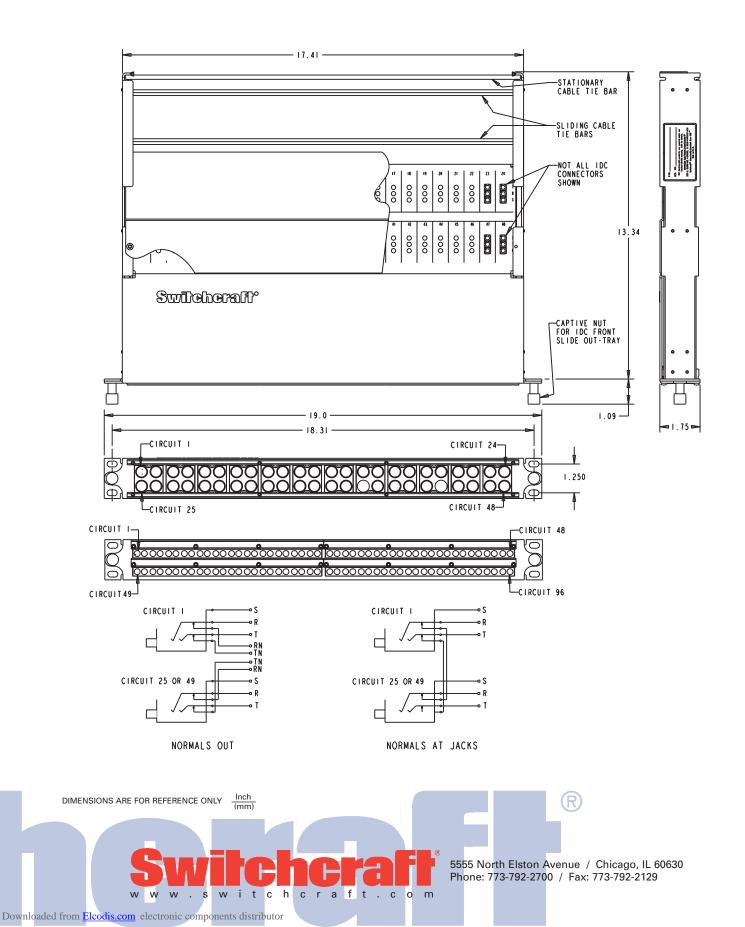
Jacks

- Frame: Nickel-plated steel Bushing: Nickel-plated brass
- Tip, Ring and Shunt Springs: Nickel silver with welded contacts
- Assembly Screws: Nickel-plated steel
- Welded Contacts: Gold alloy Panel
 - Frame: C.R.S. black epoxy painted
 - Designation Strips: Black polycarbonate 94V-0
 - Designation Strip Covers: Clear polycarbonate
 - Jack Inserts: Thermoplastic 94V-0

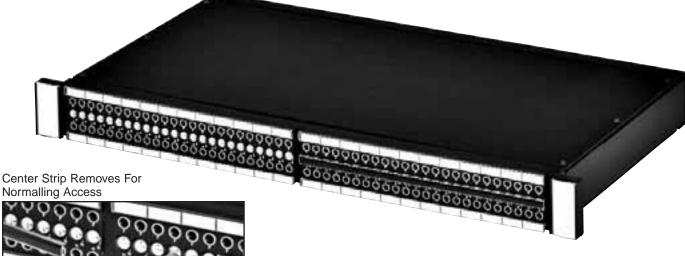
Mechanical

Life: 30,000 cycles Insertion Force: 7 lbs. maximum Withdrawal Force: 1 lb. minimum Operating: -20°C to +65°C

The Front Access Series offers the end user the ease of re-terminating patchpoints from the front of the rack as opposed to the back. A slide out tray allows the user to slide out the punchdown terminals and reconfigure the unit. An easy release mechanism on either side of the unit allows it to be pushed back into place and easy to grip locking nuts tighten the unit in place.


Electrical

- Jack Contact Resistance:
- 30 milliohms initial maximum;
- 50 milliohms after life
- Jack Insulation Resistance:
- 10,000 megohms maximum


Dielectric Withstanding Voltage: 500V at 60 Hz AC Working Voltage: 100 milliamps or less; maximum 56.5 VDC

Part Number	Type of Jack	No. of Jacks	Description
TTPFA96K1NS	TT	96	1.75" High, normals strapped
TTPFA96K1NO	TT	96	1.75" High, normals brought out
MTPFA48K1NS	MT	48	1.75" High, normals strapped
MTPFA48K1NO	MT	48	1.75" High, normals brought out

Front Access Series 9

10 EZ Norm Patchbay Series

The EZ Norm offers a simplified method for setting up and changing normals to a Bantam/TT patchbay. Simply remove the middle designation strip, and rotate the center cam, using a standard screwdriver. An audible "click" can be heard as you rotate from full normals to no normals to half normals. An opaque marking strip is included to conceal the normal position, if needed.

Easily Normal The Jacks By Rotating To "Full", "Non," Or "Half" Positions

Specifications

Materials

Jacks

Housing & Cover: 94V-0 rated thermoplastic Sleeve Collar: Nickel plated copper alloy Tip, Ring, Shunt, & Sleeve Springs: Nickel Silver with welded contacts Welded Contacts: Gold Cam Switching Springs: Silver plated copper alloy Cam Switching Contacts: Silver plated copper alloy

Mechanical

Jack Mechanical Life: 30,000 cycles Cam Contact Mechanical Life: 30,000 cycles Insertion - Withdrawal Forces: 1 - 4 lbs. Moisture resistance: MIL-STD 202 Method 106 Thermal shock: MIL-STD 202 Method 107 Salt spray: MIL-STD Method 101 (48 hrs.) Vibration: MIL-STD 202 Method 213

Electrical

Jack Spring Contact Resistance: 30 milliohm Maximum

Cam Switch Contact Resistance: 30 milliohm Maximum

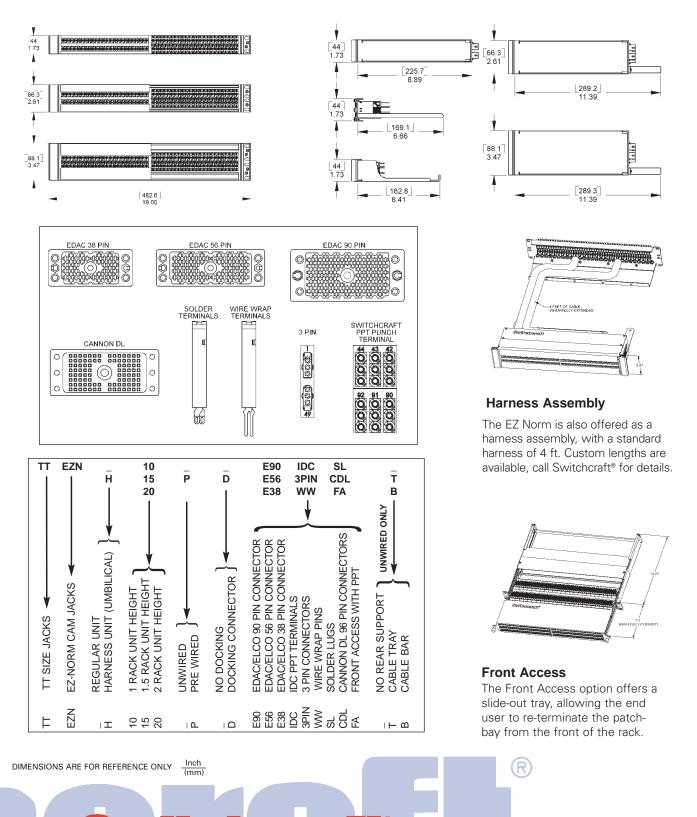
Insulation Resistance: 10,000 Megaohms

Dielectric Withstanding Voltage:

500 VAC (rms) at 60 Hz

Insertion Loss: -0.5dB up to 10 MHz

EZ Norm Patchbay Options


- 1RU can be terminated to EDAC or Cannon DL, solder terminals, or wire-wrap terminals
- 1.5RU can be terminated to EDAC/Cannon DL, solder terminals, wire-wrap terminals, plus 3 pin connectors, or our own PPT Professional Punchdown Terminal
- 2RU Same as above
- All units will be offered with or w/o docking connector
- Unwired units will be offered with either cable tie bar or cable tray

PAH:HKA

EZ Norm Patchbay Series

Racks

The EZ Norm comes in 3 different rack heights, 1RU, 1.5RU, and 2 RU.

a f t

.

c o m

С r

witch

5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129

w W . s

12 RS 422 Data Patchbay Series

Our standard RS data jackfield series offer a multiple combination of ports, rack heights, and back panel terminations which will easily fit into any television broadcast or video production where custom data patching is required. Custom ports and rack height combinations can be supplied. Contact the factory for details.

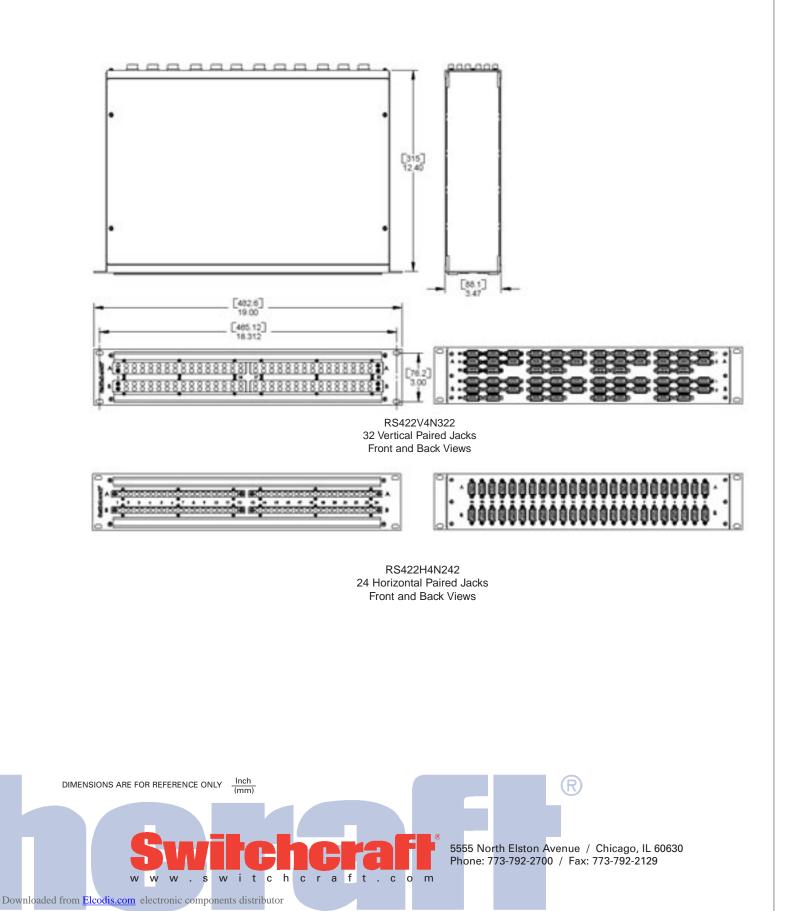
Ordering Information

Part Number*	No. of Jacks	Front Panel Layout	Back Plane	Rack Height
RS422H4N081	2 x 8	Horizontal	9 Pin D-Sub	1
RS422V4N081	2 x 8	Vertical	9 Pin D-Sub	1
RS422H4N161	2 x 16	Horizontal	9 Pin D-Sub	1
RS422H4N162	2 x 16	Horizontal	9 Pin D-Sub	2
RS422V4N161	2 x 16	Vertical	9 Pin D-Sub	1
RS422V4N162	2 x 16	Vertical	9 Pin D-Sub	2
RS422H4N242	2 x 24	Horizontal	9 Pin D-Sub	2
RS422V4N242	2 x 24	Vertical	9 Pin D-Sub	2
RS422V4N322	2 x 32	Vertical	9 Pin D-Sub	2
× A I I // NI// C		1 1		

*Add "N" for non-normalled version

Features and Benefits

- Unit Features either 8,16, 24, or 32 TT style jacks on the front Panels, to a 9 pin D-Sub.
- All versions utilize low capacitance internal wiring for maximum performance of transferring data
- All standard units are available 1 or 2 rack units high (1.5 RU available by request)
- Rugged, attractive black epoxy finished steel frame chassis


Specifications

Electrical

Internal Wiring:

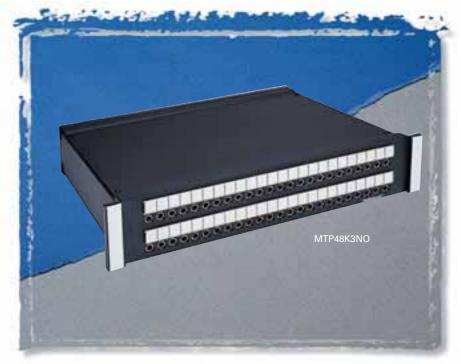
24 AWG Solid TC, foils shield **Nom Capacitance:** 11.5 pF/ft between conductors 21.3 pF/ft between one conductor and conductor connected to the shield **Nom. Impedence:** 110 Ohms

MTP48K Wired Series

Features and Benefits

- Unit features 48 MT style jacks in either 1RU (1.75" H) or 2RU (3.5" H) spaces
- All versions utilize AES/EBU wiring for complete digital compatibility
- Attractive, corrosion resistant nickel-plated, steel frame jacks
- Gold-plated switching contacts reduce contact resistance, improve reliability
- Rugged, attractive black epoxyfinished steel chassis
- Extra wide designation strips for easy channel identification
- 1RU version configurations include normals strapped and normals brought out
- 2RU version configurations include normals strapped, normals brought out, and sleeve normals brought out

Specifications


Materials

Jacks

- Frame: Nickel-plated steel Bushing: Nickel-plated brass Tip, Ring and Shunt Springs: Nickel silver with welded contacts
- Assembly Screws: Zinc-plated steel
- Welded Contacts: Gold alloy

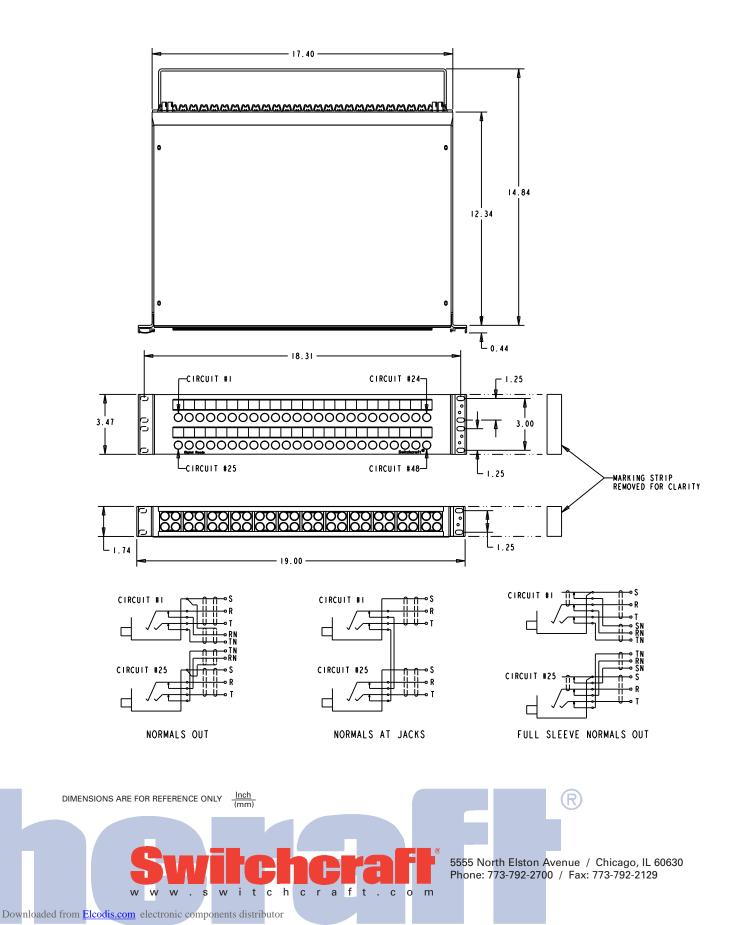
Panel

Front Channel: Black anodized aluminum Frame: C.R.S. black epoxy painted Designation Strips: Black polycarbonate 94V-0 Designation Strip Covers: Clear polycarbonate Jack Inserts: Thermoplastic polyester

The MTP Series was developed with the AES/EBU digital standard in mind. All versions are made with 110 Ohm cabling inside as a standard. Available in a wide variety of configurations.

Mechanical

Life: 30,000 cycles Insertion Force: 7 lbs. maximum Withdrawal Force: 1 lb. minimum Environmental: 0°C to +50°C


Electrical

Contact Resistance: 30 milliohms maximum initial

Insulation Resistance: 10,000 megohms maximum Dielectric Withstanding Voltage: 500 VAC at 60 Hz Working Voltage: 140 VDC maximum Current Rating: 100 milliamps

Part Number	Type of Jack	No. of Jacks	Description
MTP48K1NS	MT	48	1.75" High, normals strapped
MTP48K3NS	MT	48	3.5" High, normals strapped
MTP48K1NO	MT	48	1.75" High, normals brought out
MTP48K3NO	MT	48	3.5" High, normals brought out
MTP48K3SNO	MT	48	3.5" High, sleeve normals out

16 TTPW96K Wired Series

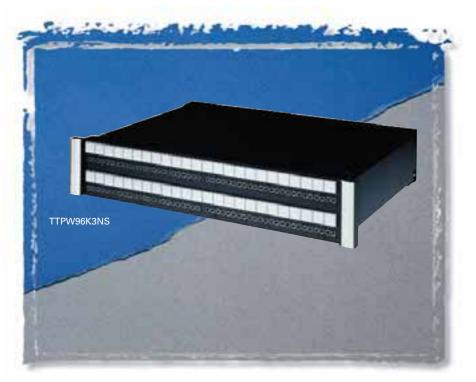
Features and Benefits

- Unit features 96 TT style jacks in 2RU (3.5"H) space
- Utilizes AES/EBU wiring for complete digital compatibility
- Attractive, corrosion resistant nickel-plated, steel frame jacks
- Gold-plated switching contacts reduce contact resistance, improve reliability
- Rugged, attractive black epoxyfinished steel chassis
- Extra wide designation strips for easy channel identification

Specifications

Materials

Jacks

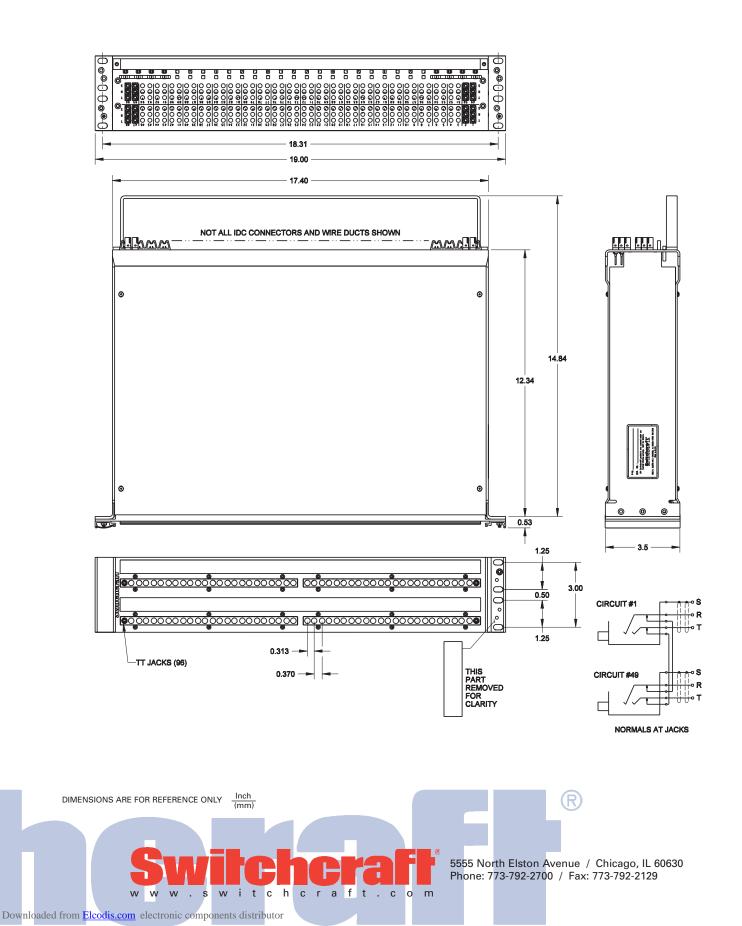

- Frame: Nickel-plated steel Bushing: Nickel-plated brass Tip, Ring and Shunt Springs: Nickel silver with welded contacts Assembly Screws: Zinc-plated steel
- Welded Contacts: Gold alloy

Panel

- Front Channel: Black anodized aluminum Frame: C.R.S. black epoxy painted Designation Strips: Black polycarbonate 94V-0 Designation Strip Covers: Clear
- polycarbonate Jack Inserts: Thermoplastic
- polyester

Mechanical

Life: 30,000 cycles Insertion Force: 7 lbs. maximum Withdrawal Force: 1 lb. minimum Environmental: 0°C to +50°C


The TTPW96K Series was developed with the AES/EBU digital standard in mind. As a standard, the TTPW96K utilizes 110 Ohm cabling inside.

Electrical

Contact Resistance: 30 milliohms maximum initial Insulation Resistance: 10,000 megohms maximum Dielectric Withstanding Voltage: 500 VAC at 60 Hz Working Voltage: 140 VDC maximum Current Rating: 100 milliamps

Type of Jack	No. of Jacks	Description
TT	96	1.75" High, non-normals
TT	96	1.75" High, half normals
TT	96	1.75" High, normals strapped
TT	96	3.5" High, non-normals
TT	96	3.5" High, half normals
TT	96	3.5" High, normals strapped
	Type of Jack Π Π Π Π Π Π Π Π Π Π	TT 96 TT 96 TT 96 TT 96 TT 96 TT 96

18 MTPBP/TTPBP Backpanel Series

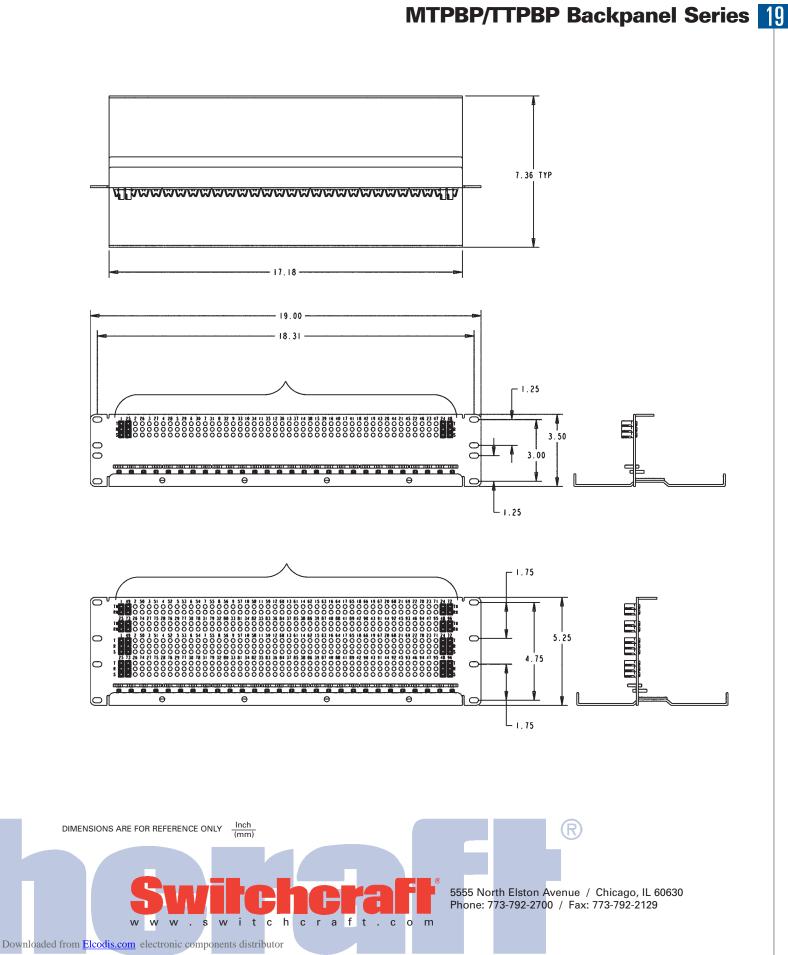
Features and Benefits

- Allows for custom patchbay configurations or central patching points
- PPTs have IDCs on both sides for easy installation
- Rugged, attractive black epoxy-finished steel chassis
- Cable trays allow for mounting and securing terminated cable

Specifications

Panel thickness: .093" Mounting hole diameter: .187" Mounting hole spacing (48 IDCs/row): .340" (Horizontal) x .275" (Vertical) Mounting hole spacing (52 IDCs/row): .320" (Horizontal) x .275" (Vertical) Wire size: #22, 24, 26 AWG Stranded or Solid (IDC termination)

Materials


Housing: Thermoplastic (UL 94V-0) Contacts: High strength copper alloy Backpanels: Black Epoxy coated C.R.S.

Cable Tray: Black Epoxy coated C.R.S.

The Backpanel Series offers the end user the flexibility of configuring their own patchbay, or to use as a central patchpoint location. The backpanels utilize the PPT punchdown and come with a rugged cable tray.

	Sets of		
Part Number	PPT Terminals	Height	Description
MTP48K3BPNS	48	3.5"	T, R, S
MTP48K3PBNO	48	3.5"	T, R, S, TN, RN
MTP52K3BPNO	52	3.5"	T, R, S, TN, RN
MTP24K7	24 x 2	7.0"	+, -, S
TTP96K3BPNS	96	3.5"	T, R, S
TTP96K5BPNS	96 x 2	5.25"	T, R, S, TN, RN

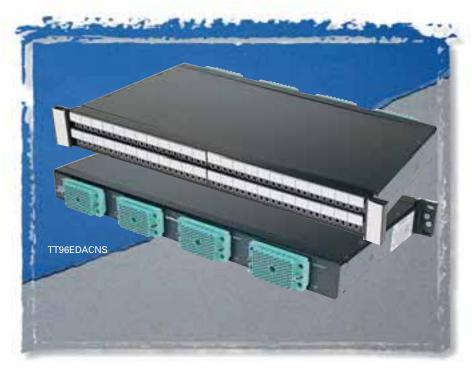
20 TT96 EDAC Series

Features and Benefits

- Attractive, corrosion-resistant, nickel-plated jacks
- Steel frame jacks for superior jack life
- Extra wide labeling strips provide maximum space and two vertical strips, one at each side
- Rugged, attractive black anodized aluminum face will not break
- Two configurations available:
 Normals brought out
 - Normaled at jacks
- Gold switching contacts for long-term reliability
- Jacks paired for easy identification of left and right channels
- Connectorized by EDAC[®] connectors for ease of termination by customer

Specifications

Materials


Jacks

- Frame: Nickel-plated steel Bushing: Nickel-plated brass Tip, Ring and Shunt Springs: Nickel silver with welded contacts Assembly Screws: Zinc-plated
- steel Woldod Contonto: Cold (
- Welded Contacts: Gold alloy
- Panel
 - Front Channel: Black anodized aluminum
 - Frame & Cover: C.R.S. black epoxy painted
 - Designation Strips: Black polycarbonate 94V-0
 - Designation Strip Covers: Clear polycarbonate Jack Inserts: Polyester
- EDAC Connector

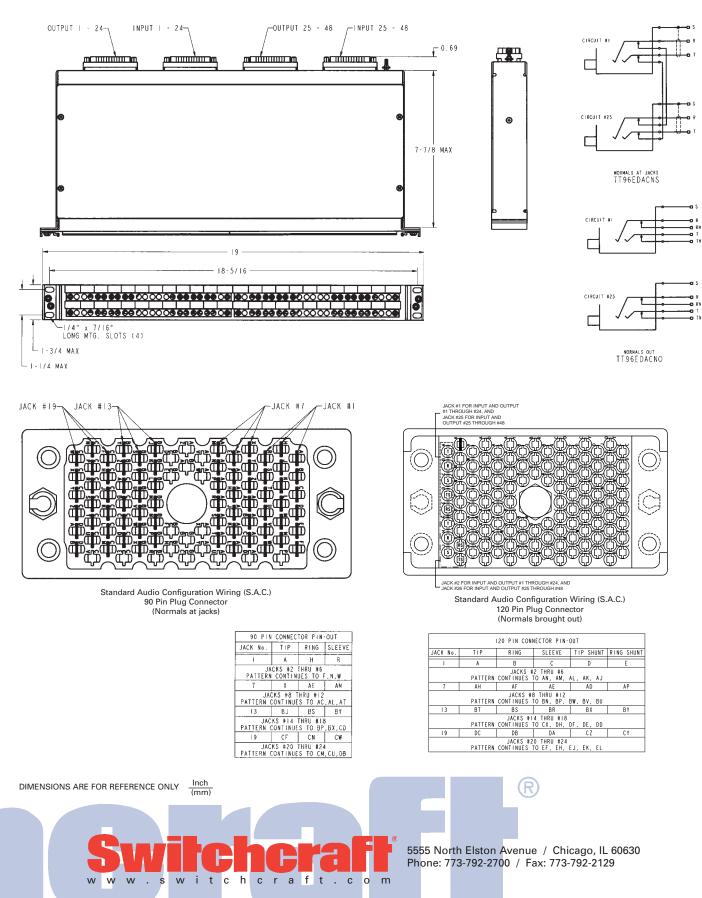
Housing: Thermoplastic, UL94V-0 Contacts: Gold plated phosphor bronze

Mechanical

Life: 30,000 cycles Insertion Force: 7 lbs. maximum Withdrawal Force: 1 lb. minimum Operating: -20°C to +65°C

The TT96EDAC Series offers the convenience of EDAC[®] connectors on the back of the panel for easy installation. Available in normals strapped and normals brought out, both wired to the SAC code of wiring. We also offer custom wiring configurations. Contact the factory for details.

Electrical


Contact Resistance: 30 milliohms maximum initial Insulation Resistance: 10,000 megohms Dielectric Withstanding Voltage: 500VAC at 60 Hz Working Voltage: 140VDC Current Rating: 100 milliamps

EDAC Mating Plugs

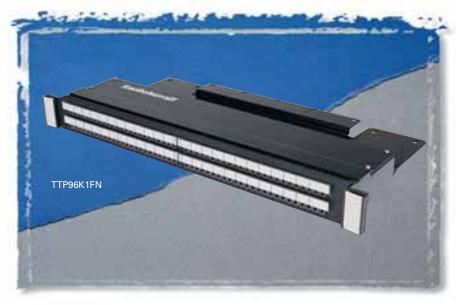
Part Number	Description			
516-090-000-301	90 Pin male w/ screw			
516-090-000-302	90 Pin male w/ nut			
516-120-000-101	120 Pin male w/ screw			
516-120-000-102	120 Pin male w/ nut			
516-290-500	Terminal solder-style			
516-290-590	Terminal crimp-style			

Part Number	Type of Jack	No. of Jacks	Description
TT96EDACNO	TT	96	Normals Brought Out (120 pin EDAC)
TT96EDACNS	TT	96	Normals Strapped (90 pin EDAC)

22 TTP96K Patchkit Series

Features and Benefits

- Kit features 96 TT jacks in one rack space (1.75" high) or two rack spaces (3.5" high)
- Jack blocks can be removed from the front for easy soldering
- Dust tray limits dirt, dust and contamination of jack terminals
- Wire management straps are adjustable and reusable
- Attractive, corrosion resistant nickel-plated jacks
- Steel frame jack for superior jack life
- Extra wide labeling strips provide maximum space
- Rugged, attractive black anodized aluminum face will not break or rust
- Three jack configurations available for the exact switching arrangement you need: full normal, half normal, and non-normal (open circuit)
- Fanned solder terminals for easier solder connections
- Gold switching contacts for longterm reliability in normal-through connections


Specifications

Materials

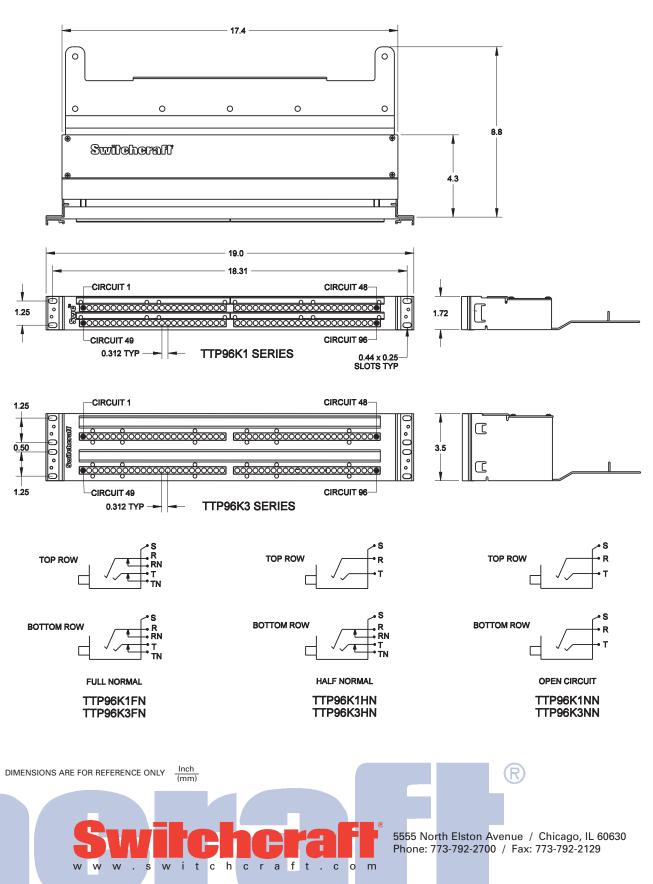
Jacks

Frame: Nickel-plated steel Bushing: Nickel-plated brass

- Tip, Ring and Shunt Springs: Nickel silver with welded contacts
- Assembly Screws: Nickel-plated steel
- Welded Contacts: Gold alloy
- Panel
 - Front Channel: Black anodized aluminum
 - Frame: C.R.S. black epoxy painted Designation Strips: Black
 - polycarbonate 94V-0
 - Designation Strip Covers: Clear polycarbonate
 - Jack Inserts: Thermoplastic
 - polyester

The TTP96K Patchkit Series offers the end user a rugged cable tray to support rear cabling. Heavy duty construction takes weight off the back of the jacks for increased reliability. Available in 1.75" or 3.5" height versions.

Mechanical


Life: 30,000 cycles Insertion Force: 7 lbs. maximum Withdrawal Force: 1 lb. minimum Environmental: 0°C to +50°C

Electrical

Contact Resistance: 30 milliohms maximum initial Insulation Resistance: 10,000 megohms maximum Dielectric Withstanding Voltage: 500VAC at 60 Hz Working Voltage: 140VDC maximum Current Rating: 100 milliamps

Part Number	Type of Jack	No. of Jacks	Description
TTP96K1FN	TT	96	1.75" High, full normals
TTP96K1HN	TT	96	1.75" High, half normal
TTP96K1NN	TT	96	1.75" High, no normals
TTP96K3FN	TT	96	3.5" High, full normals
TTP96K3HN	TT	96	3.5" High, half normals
TTP96K3NN	TT	96	3.5" High, no normals

TTP96K Patchkit Series 23

Downloaded from Elcodis.com electronic components distributor

24 MT48K/MT52K Patchkit Series

Features and Benefits

- Kit features 48 1/4" longframe jacks in one rack space (1" high) or in two rack spaces (3" high) or 52 1/4" longframe jacks in one rack space (1" high)
- Allows user to add cable and termination panel
- Removable jack panel from the front allows easy soldering of wire connections
- Jacks have gold switching contacts
- Fanned solder terminals for easier soldering
- Offset ground lugs allow easy bussing of ground with one wire
- Jacks have a nickel-plated frame and assembly screws
- Wire management straps are reusable and adjustable

Specifications

Materials

Jacks

Frame: Stamped nickel-plated steel

Bushing: Nickel-plated brass

- Tip, Ring and Shunt Springs: Nickel silver with welded contacts
- Assembly Screws: Nickel-plated steel
- Welded Contacts: Gold alloy

Panel

Front Panel: Thermoplastic Frame: C.R.S. black epoxy paint Designation Strips: Black polycarbonate 94V-0

Designation Strip Covers: Clear polycarbonate

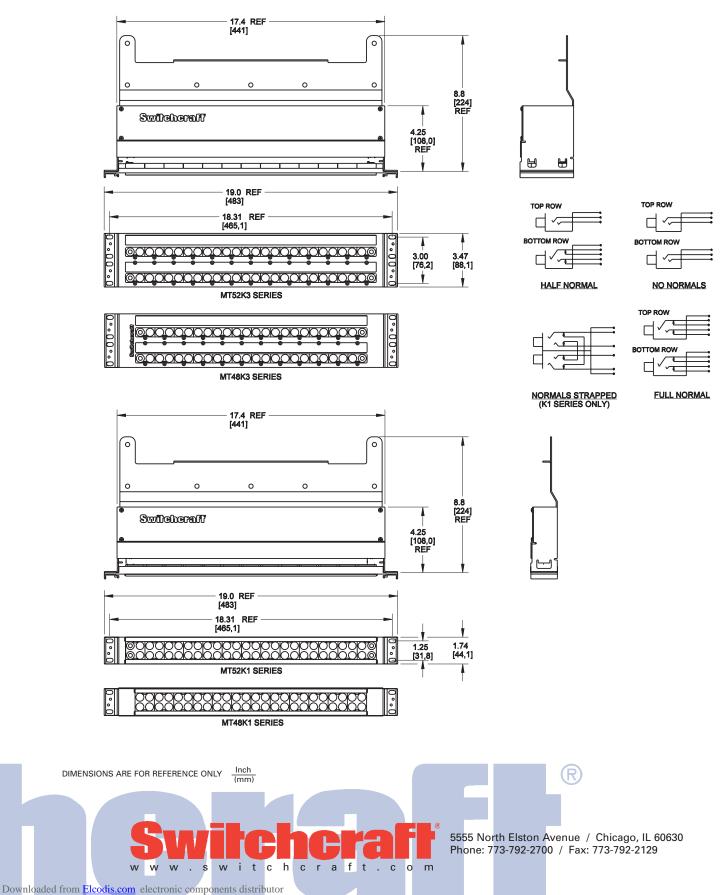
Mechanical

Life: 30,000 cycles Insertion Force: 7 lbs. maximum Withdrawal Force: 1 lb. minimum Operating: 0°C to +50°C

The MT48/52K Patchkit Series offers the end user a rugged cable tray to support rear cabling. Heavy duty construction takes weight off the back of the jacks for increased reliability. Available in 1.75" or 3.5" height versions.

Electrical

Contact Resistance: 30 milliohms maximum initial Insulation Resistance: 10,000


megohms maximum

Dielectric Withstanding Voltage: 500VAC at 60 Hz Working Voltage: 140VDC maximum Current Rating: 100 milliamps

Part Number	Type of Jack	No. of Jacks	Height	Description
MT48K1NS	MT	48	1.75"	Normals strapped
MT48K1FN	MT	48	1.75"	Full normals
MT48K1HN	MT	48	1.75"	Half normals
MT48K1NN	MT	48	1.75"	No normals
MT52K1NS	MT	52	1.75"	Normals strapped
MT52K1FN	MT	52	1.75"	Full normals
MT52K1HN	MT	52	1.75"	Half normals
MT52K1NN	MT	52	1.75"	No normals
MT48K3FN	MT	48	3.5"	Full normals
MT48K3HN	MT	48	3.5"	Half normals
MT48K3NN	MT	48	3.5"	No normals
MT52K3FN	MT	52	3.5"	Full normals
MT52K3HN	MT	52	3.5"	Half normals
MT52K3NN	MT	52	3.5"	No normals

PATCHRAYS

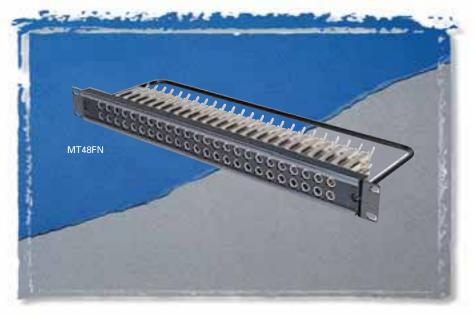
MT48K/MT52K Patchkit Series 25

MT48/MT52 Patchbay Series

Features and Benefits

- Units feature either 48 or 52 MT Jax[®]
- Steel frame jacks for superior jack life
- Attractive, corrosion resistant nickel-plated jacks
- Gold switching contacts for long-term reliability in normalthrough connections
- Offset ground terminal for ease in making common ground buss connections
- Fanned solder terminals for easier solder connections
- Cable tie bar takes the weight of cables off the jacks
- Four jack configurations available for the exact switching arrangement: full normal, half normal, non-normal, and normals strapped

Specifications


Materials

Jacks

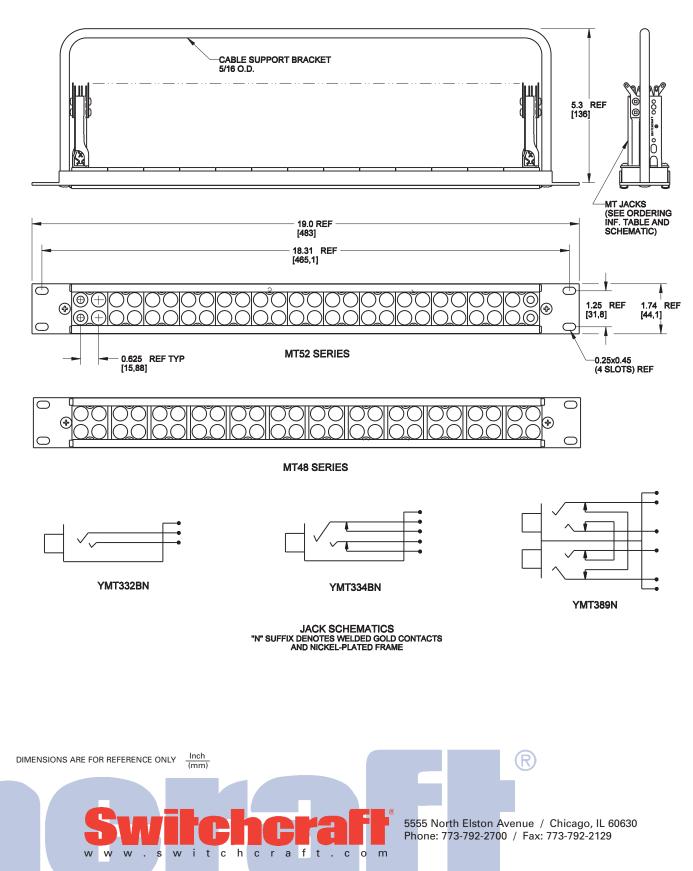
- Frame: Steel, nickel-plated Bushing: Brass, nickel-plated Springs: Nickel silver, solder lugs Ground Terminal: Nickel silver, solder lugs
- Switching Contacts: Welded, gold alloy
- Insulation: Phenolic spacers, rigid PVC tubing through stack Screws: Steel, nickel-plated

Panel

- Jack Panel: Thermoplastic Cable Support Bracket: 5/16" diameter black epoxy painted steel rod
- Screws (designation strip): Steel, black zinc-plated
- Screws (mounting jack): Steel, nickel plated
- Kwik-change® Designation Strip: Extruded aluminum, black anodized
- Marking Strip:
- White plastic, matte finish Marking Strip Cover:
- Clear, extruded plastic

The MT48/52 Series patchbays offer a rugged cable tie bar to support rear cabling. Also available is the normals strapped configuration which has the shunts or normals tied together, top to bottom jacks.

Mechanical


Life: 30,000 cycles Insertion Force: 7 lbs. maximum Withdrawal Force: 1 lb. minimum Operating: 0°C to +50°C

Electrical

Contact Resistance: 30 milliohms maximum initial Insulation Resistance: 10,000 megohms maximum Dielectric Withstanding Voltage: 500VAC at 60 Hz Working Voltage: 140VDC maximum Current Rating: 100 milliamps

Part Number	Type of Jack	No. of Jacks	Description	
MT48FN	MT	48	Full normals	
MT48HN	MT	48	Half normals	
MT48NN	MT	48	No normals	
MT48NS	MT	48	Normals strapped	
MT52FN	MT	52	Full normals	
MT52HN	MT	52	Half normals	
MT52NN	MT	52	No normals	
MT52NS	MT	52	Normals strapped	

28 TTP96AS Patchbay Series

Features and Benefits

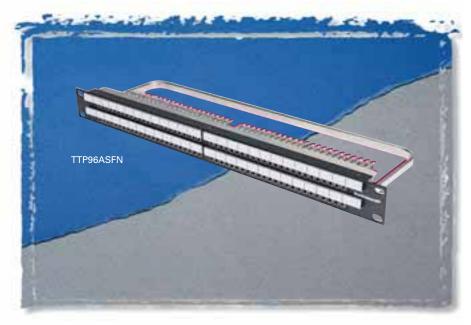
- Unit features 96 TT jacks
- Attractive, corrosion resistant nickel-plated jacks
- Steel frame jack for superior jack life
- Extra wide labeling strips provide maximum space
- Rugged cable tie bar takes the weight of cables off the jacks
- Rugged, attractive black anodized aluminum face will not break
- Three jack configurations available for the exact switching arrangement you need: full normal, half normal, and open circuit panel
- Fanned solder terminals for easier solder connections
- Offset ground terminal for ease in making common ground buss connections
- Gold switching contacts for long-term reliability in normalthrough connections

Specifications

Materials

Jacks

Frame: Steel, nickel-plated Bushing: Nickel-plated copper alloy Springs: Copper alloy solder lugs Ground Terminal: Steel, tin electrodeposited


Switching Contacts: Welded, gold alloy inlay over palladium base Insulation: Rigid plastic spacers,

rigid PVC tubing through stack Screws: Steel, plated

Panel

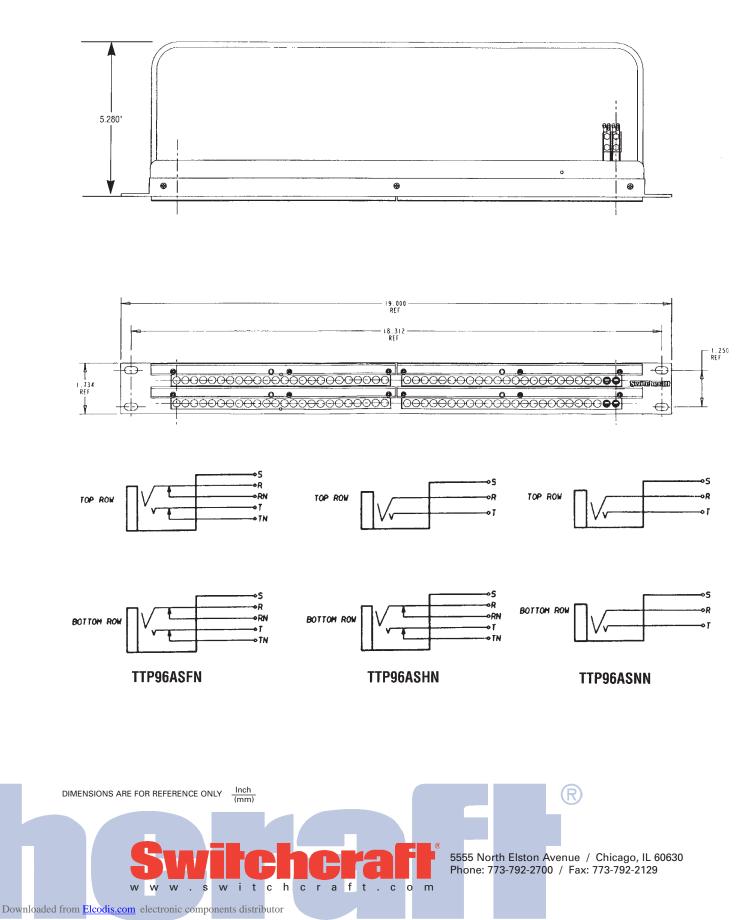
Frame: Black anodized aluminum Inserts: Polyester, glass filled, 94V-0

- Cable Support Bar: Cold rolled steel, nickel-plated
- Designation Strips: Thermoplastic, 94V-0

The TTP96AS Series of patchbays offer a rugged cable tie bar to support rear cabling.

Designation Strip Covers: Clear thermoplastic, SE-1 Marking Strip: Rigid vinylite Jack Mounting Screws: Steel, plated Screws: Steel, black plated

Mechanical


Life: 30,000 cycles Insertion Force: 7 lbs. maximum Withdrawal Force: 1 lb. minimum Environmental: 0°C to +50°C

Electrical

Contact Resistance: 30 milliohms maximum initial Insulation Resistance: 10,000 megohms maximum Dielectric Withstanding Voltage: 500VAC at 60 Hz Working Voltage: 140VDC maximum Current Rating: 100 milliamps

Part Number	Type of Jack	No. of Jacks	Description
TTP96ASFN	TT	96	Full normals
TTP96ASHN	TT	96	Half normals
TTP96ASNN	TT	96	No normals

30 HPC Patchbay Series

Features and Benefits

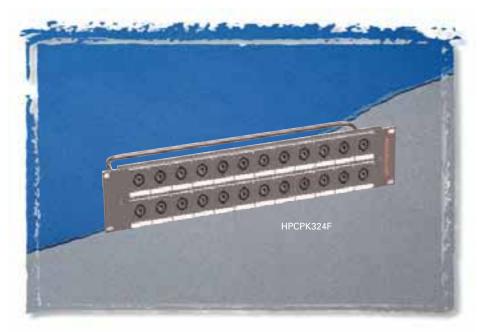
- Available in 1RU or 2RU versions
- Available with or without connectors
- HPC Series connectors are compatible with Neutrik Speakon[®] connectors
- Cable tie bar takes weight of the cables off the terminations
- Rugged aluminum channel
- Silk-screen designation area makes it easy to re-label channels

Panel Materials

Housing: Thermoplastic UL 94V-0 rated Contacts: Silver-plated over copper alloy Frame: Aluminum, black anodized Cable Tie Bar: Steel, black epoxy

HP Connector Specifications

Mechanical

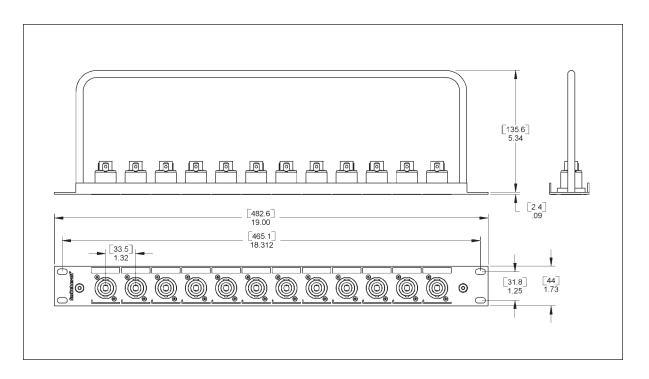

Shock: Per Mil-Std 202, Method 213B, Cond. K Vibration: Mil-Std 202, Method 201A Life: 1,000 rotational cycles Cable Range (cord mount): 10AWG, 0.560" cable OD maximum

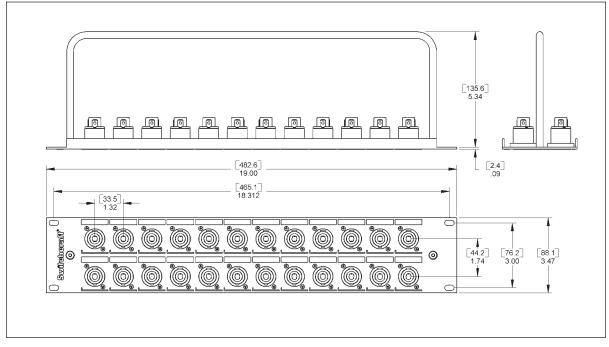
Electrical

Voltage Rating: 1,500 AC RMS, per Mil-Std 202, Method 301 Current Rating (Faston® terminals): 50A RMS w/10AWG wire, normal ambient, per UL 1977 Current Rating (PC terminals): 30A per UL 1977 Contact Resistance: 1mΩ, 1.5mΩ after 1,000 insertion/withdrawals Insulation Resistance: .2TΩ

Environmental

Salt Spray: Mil-Std 202, Method 101D, Cond.B Thermal Shock: Mil-Std 202, Method 107G Temperature Limits: -55°C to +85°C Moisture Resistance: Mil-Std 202, Method 106E Life @ Ambient Temperature: Mil-Std 202, Method 108A Touchproof: IEC 65 and 1010-1 IP Rating: IEC 529, IP 25


The HPC Patchbay features a 19" rack unit loaded with HPC Series connectors. Available with either 0.250" Faston® terminals or 0.187" Faston® terminals. One rack unit height versions come with 12 HPC connectors, two rack unit height versions come with 24 HPC connectors. All versions have a rugged cable tie bar, which takes the weight of the cabling away from the connections.


Materials

Housings: Thermoplastic UL 94V-0 rated Seal Rings: Thermoplastic rubber Contacts: Silver-plated over copper alloy

Part Number	Height	Description
HPCPK112F	1.75"	12 connectors, 0.250" Fastons
HPCPK112F1	1.75"	12 connectors, 0.187" Fastons
HPCPK1B	1.75"	Blank panel
HPCPK324F	3.50"	24 connectors, 0.250" Fastons
HPCPK324F1	3.50"	24 connectors, 0.187" Fastons
НРСРК3В	3.50"	Blank panel

HPC Patchbay Series 31

32 Q-G[®] Patchbay Series

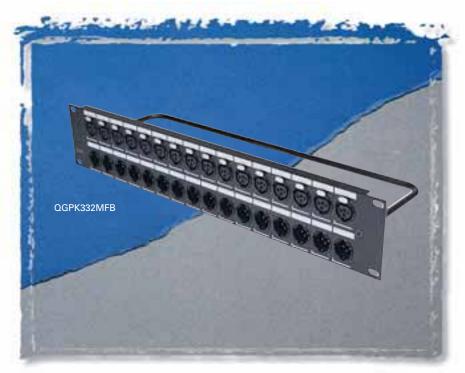
Features and Benefits

- Available in 1RU or 2RU versions
- Available with or without the connectors
- E Series connectors are silver-plated, 3 pins/contacts with black finish
- Cable tie bar takes the weight of the cables off the solder terminations
- Rugged aluminum channel increases durability
- Silk-screen designation area makes it easy to re-label channels

Specifications

Materials

Connectors

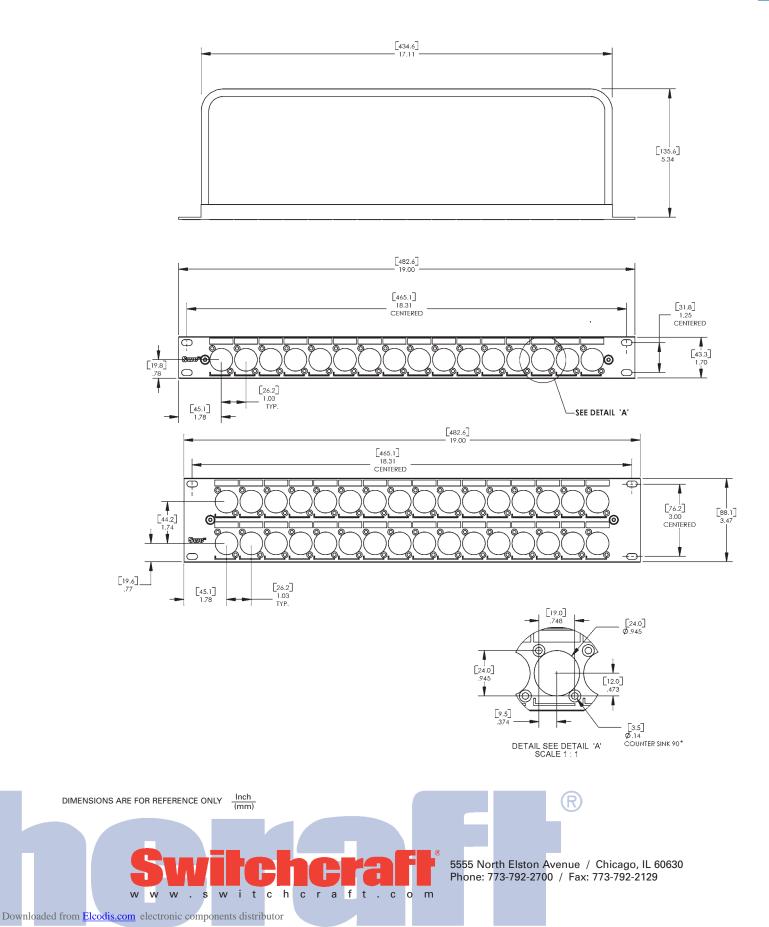

Housing: Die-cast, black velvet finish Inserts: Glass-filled thermoplastic Pin/Contacts: Copper alloy, silver-plated Latch Release: Steel, nickel-plated Insert Locking Cam: Die-cast zinc

Frame

Aluminum, black anodized

Cable Tie Bar

Steel, black epoxy



The QG[®] Patchbay features a 19" rack unit loaded with E Series QG[®] connectors. These XLR's have the same panel cut-out, male or female, silver-plated pins or contacts, and a black finish. All connectors have solder cup terminals for easy soldering and the inserts are removable from the back, allowing for easy changes. The one rack unit height version comes with 16 male, or 16 female, or 8 male and 8 female connectors. The two rack unit version comes with 16 male and 16 female connectors. We also offer the unit without connectors, but with the panel cut-outs already punched out.

All versions have a rugged cable tie bar, which takes the weight of the cabling away from the solder connections.

Part Number	Height	Description
QGPK116FB	1.75"	16 female
QGPK116MB	1.75"	16 male
QGPK18M8FB	1.75"	8 male, 8 female
QGPK332MFB	3.5"	16 female(top), 16 male (bottom)
QGPK1B	1.75"	Blank panel
QGPK3B	3.5"	Blank panel

Q-G[®] Patchbay Series 33

34 VPP Video Patchbay Series

Features and Benefits

- HD Series rated from DC to 3.0 GHz
- SD Series has a bandwidth from DC to 1.75GHz
- Black thermoplastic modules insulate jacks from chassis
- Jacks feature rugged heavy duty housings

Video Jack Specifications

Electrical

Rated Bandwidth: 3.0 GHz (HD), 1.75 GHz (SD) Characteristic Impedance: 75 ohms Return Loss: Better than –15 dB Insertion Loss: Better than –.5 dB Contact Resistance: Less than 20 milliohms Termination Resistance: 75 W, ±1% Center Conductor: Accepts .090 pin diameter

Mechanical

Mechanical Shock: Per MIL-STD-202, Method 213, Test condition I Vibration: Per MIL-STD-202, Method 201 Life Cycle: 30,000

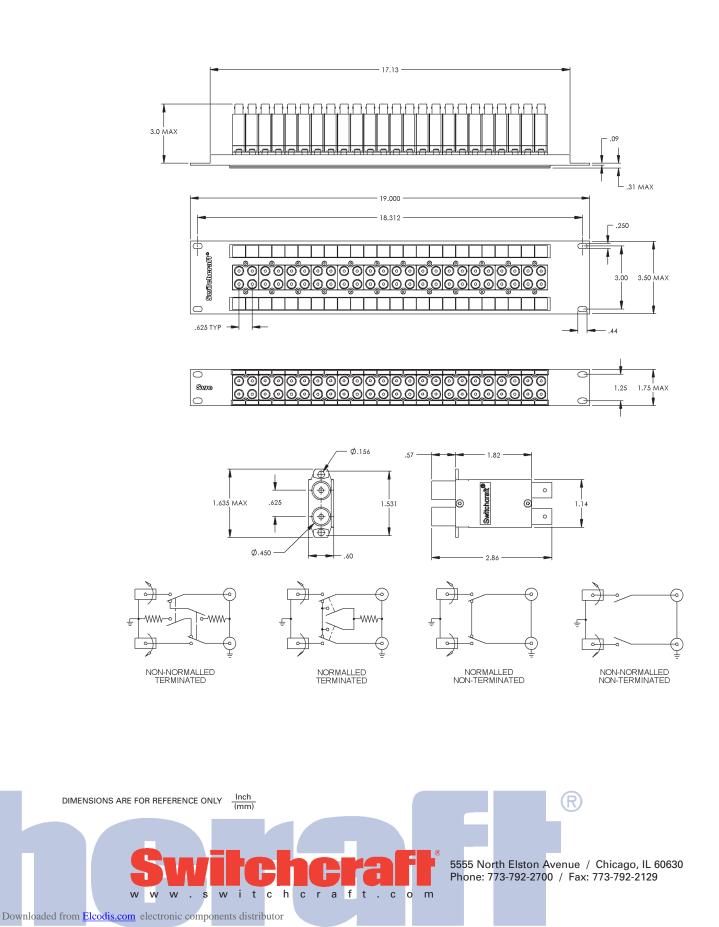
Materials

- Housing: Zinc alloy, nickel plated Center Contacts: Copper alloy, gold plated Switching Springs: Copper alloy, gold plated Grounding Contacts: HD Series - Copper alloy, gold plated SD Series - Copper alloy, nickel
- plated Insulators: Thermoplastic,
- UL 94V-0 rated

Environmental

Operating Temperature: – 40°C to 65°C Storage Temperature: – 55°C to 85°C Thermal Shock: Per MIL-STD-202, Method 107 Moisture and Humidity: Per MIL-STD-202, Method 106

The VPP Series video patchbays offer a wide variety of options for video patching. The HD Series meets SMPTE 292M specifications for high definition video signaling, covering a bandwidth range from DC to 3.0GHz. The SD Series is perfect for serial digital, with a bandwidth from DC to 1.75GHz. Both come in either terminated or non-terminated, 24 or 26 jacks, 1.75" or 3.5" heights.

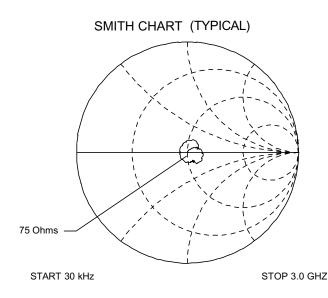

Ordering Information

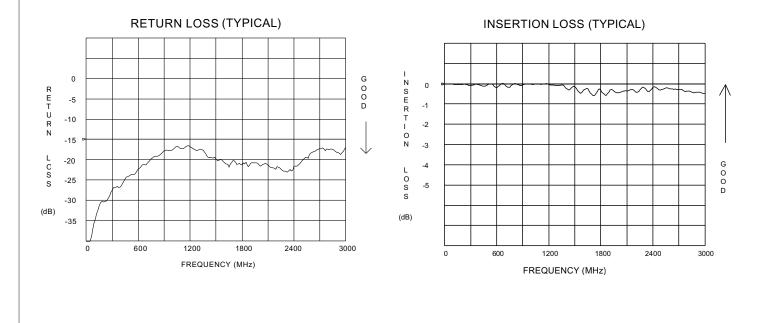
· · · · · · · · · · · · · · · · · · ·				
Part Number	Type of Jack	No. of Jacks	Height	Description
VPP24K1HD*75T	HD	24	1.75"	Terminated
VPP24K1HD*NT	HD	24	1.75"	Non-term
VPP24K1SD*75T	SD	24	1.75"	Terminated
VPP24K1SD*NT	SD	24	1.75"	Non-term
VPP26K1HD*75T	HD	26	1.75"	Terminated
VPP26K1HD*NT	HD	26	1.75"	Non-term
VPP26K1SD*75T	SD	26	1.75"	Terminated
VPP26K1SD*NT	SD	26	1.75"	Non-term
VPP24K3HD*75T	HD	24	3.5"	Terminated
VPP24K3HD*NT	HD	24	3.5"	Non-term
VPP24K3SD*75T	SD	24	3.5"	Terminated
VPP24K3SD*NT	SD	24	3.5"	Non-term
VPP26K3HD*75T	HD	26	3.5"	Terminated
VPP26K3HD*NT	HD	26	3.5"	Non-term
VPP26K3SD*75T	SD	26	3.5"	Terminated
VPP26K3SD*NT	SD	26	3.5"	Non-term

* Add "N" for non-normalled version

See Page 36 for Individual Jacks Ordering Information

VPP Video Patchbay Series 35




36 VPP Video Patchbay Series

Ordering - Individual Jacks

Part Number	Туре	Description
VJHD*75TX	HD	Terminated
VJHD*NTX	HD	Non-terminated
VJSD*75TX	SD	Terminated
VJSD*NTX	SD	Non-terminated
× A I I # A I #		

* Add "N" for non-normalled version

Downloaded from Elcodis.com electronic components distributor

MVP Midsize Video Patchbay Series 37

Features and Benefits

- Midsize video jacks rated from DC to 3 GHz
- 32 midsize jacks mounted either 1RU, 1.5RU or 2RU panel
- Available in terminated or non-terminated configurations

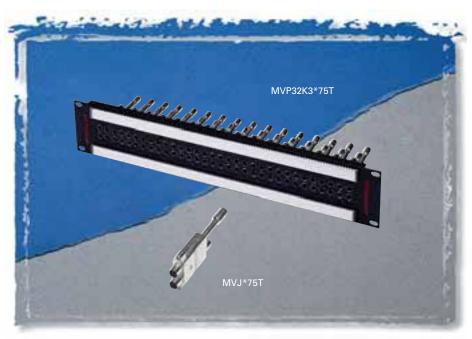
Specifications

Materials

Frame: Aluminum, black anodized Designation Strips: Vinylite, white Designation Strip Covers: Lexan, transparent Jack Inserts: Thermoplastic, UL 94V-0 rated

Midsize Video Jack Specifications

Electrical


Rated Bandwidth: 3.0 GHz Characteristic Impedance: 75 ohms Return Loss: See Typical Return Loss Chart Insertion Loss: See Typical Insertion Loss Chart Contact Resistance: Less than 20 milliohms Termination Resistance: 75 W, ±1% Center Conductor: Accepts .048 pin diameter

Mechanical

Mechanical Shock: Per MIL-STD-202, Method 213, Test condition I Vibration: Per MIL-STD-202, Method 201 Life Cycle: 30,000

Materials

Housing: Zinc alloy, nickel plated Center Contacts: Copper alloy, gold plated

The MVP Series video patchbays offer outstanding performance and high density. Patchbays consist of 32 jacks in either 1RU or 2RU heights, jacks come either terminated or non-terminated. These jacks are rated from DC to 3 GHz, and are rated at 30,000 lifecycles. The 1.5RU and 2RU come with cable tie bars.

Switching Springs: Copper alloy, gold plated Grounding Contacts: Copper alloy, gold plated BNC Insulators: Teflon Actuators: Thermoplastic, UL94V-0 rated

Environmental

Operating Temperature: – 40°C to 65°C Storage Temperature: – 55°C to 85°C Thermal Shock: Per MIL-STD-202, Method 107 Moisture and Humidity: Per MIL-STD-202, Method 106

Ordering Information

Part Number	Type of Jack	Height	Description
MVP32K1*75T	Midsize	1.75"	Terminated
MVP32K1*NT	Midsize	1.75"	Non-terminated
MVP32K2*75T	Midsize	2.62"	Terminated
MVP32K2*NT	Midsize	2.62"	Non-terminated
MVP32K3*75T	Midsize	3.5"	Terminated
MVP32K3*NT	Midsize	3.5"	Non-terminated
		_	

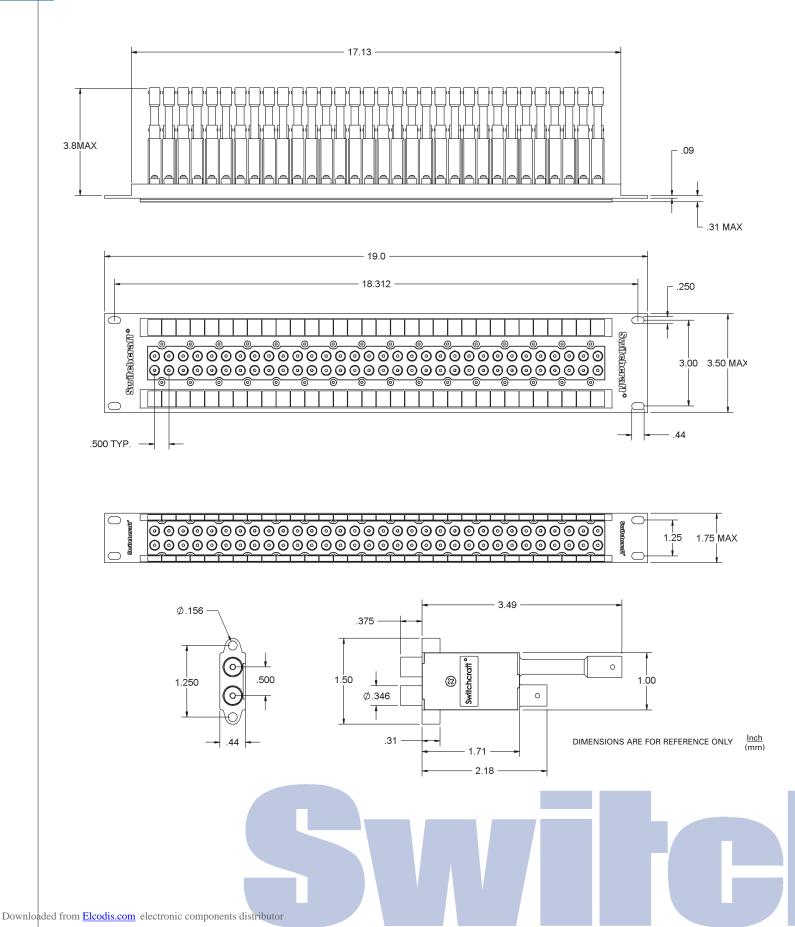
* Add "N" for non-normalled version

c o m

See Page 39 for Individual Midsize Jacks Ordering Information

5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129

R


ww.s

witch

c r

a f t

38 MVP Midsize Video Patchbay Series

MVP Midsize Video Patchbay Series 39

SMITH CHART (TYPICAL) **Ordering - Individual Midsize Jacks** Part Number Туре Description MVJ*75T HD Terminated MVJ*NT HD Non-terminated * Add "N" for non-normalled version 75 Ohms START 30 kHz STOP 3.0 GHZ **INSERTION LOSS (TYPICAL) RETURN LOSS (TYPICAL)** INSERTION 0 G 0 0 D 0 R E T U R N -5 -1 -10 -2 -15 -3 L O S S -20 G O O D -4 L O S S -25 -5 -30 (dB) (dB) -35 0 600 1200 1800 2400 3000 0 600 1200 1800 2400 3000 FREQUENCY (MHz) FREQUENCY (MHz) R Inch (mm) DIMENSIONS ARE FOR REFERENCE ONLY 5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129

craft

. c o m

```
w
Downloaded from Elcodis.com electronic components distributor
```

w w

. s

W

itch

40 VAP Video/Audio Patchbay Series

Features and Benefits

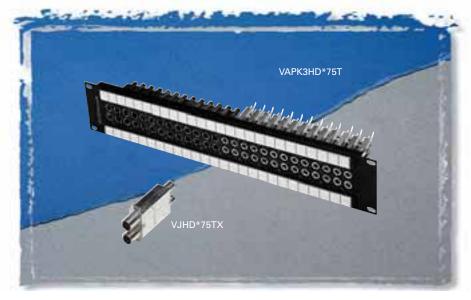
- Combines 13 video jacks and 26 long-frame audio jacks into one patchbay
- Available with either HD Series or SD Series video jacks
- All audio jacks are nickel-plated with steel frames and gold-plated switching contacts
- Audio modules consist of 4 YMT334BN jacks, video modules consist of 2 dual video jacks

Video Jack Specifications

Electrical

Rated Bandwidth: 2.4 GHz (HD), 1.75 GHz (SD) Characteristic Impedance: 75 ohms Return Loss: Better than -15 dB Insertion Loss: Better than -.5 dB Contact Resistance: Less than 20 milliohms

Termination Resistance: 75 W, ±1% Center Conductor: Accepts .090 pin diameter


Mechanical

Mechanical Shock: Per MIL-STD-202, Method 213, Test condition I Vibration: Per MIL-STD-202, Method 201 Life Cycle: 30,000

Materials

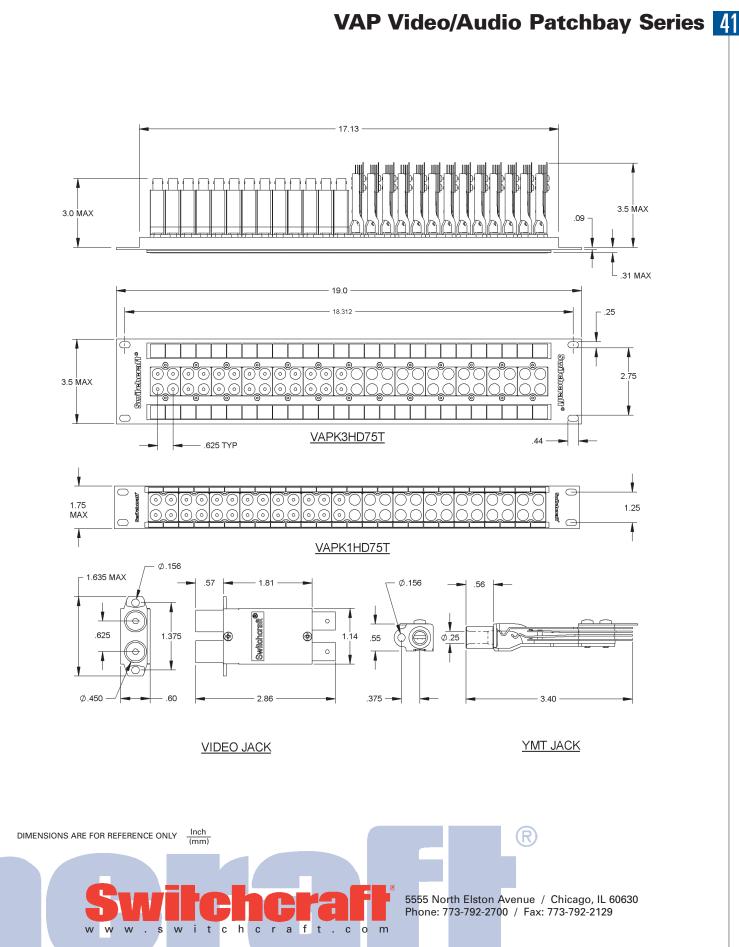
Housing: Zinc alloy, nickel plated Center Contacts: Copper alloy, gold plated Switching Springs: Copper alloy, gold plated Grounding Contacts: HD Series - Copper alloy, gold plated SD Series - Copper alloy, nickel plated Insulators: Thermoplastic, UL 94V-0 rated

See Page 36 For Video Jack **Ordering Information and** Page 69 For Audio Jack **Ordering Information**

The VAP Series combines audio and video in one convenient patchbay. Standard versions consist of 13 video jacks and 26 long-frame audio jacks into one unit. Options include HD Series video jacks which are rated from DC to 2.4GHz or SD Series rated from DC to 1.5GHz. Both come in either terminated or non-terminated jacks. The MT Style audio jacks all have nickel-plated steel frames and gold-plated switching contacts. Flared terminals make soldering easier. All audio jacks are T,R,S, TN, and RN. Individual modules are useful for custom configurations.

Thermal Shock: Per MIL-STD-202,

Method 107


Environmental

Operating Temperature: - 40°C to 65°C

Moisture and Humidity: Per MIL-STD-202, Method 106 Storage Temperature: - 55°C to 85°C

Ordering Information

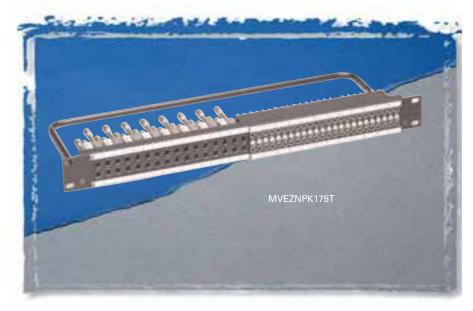
Part Number	Type of Jack	Height	Description		
VAPK1HD*75T	HD	1.75"	Terminated		
VAPK1HD*NT	HD	1.75"	Non-terminated		
VAPK1SD*75T	SD	1.75"	Terminated		
VAPK1SD*NT	SD	1.75"	Non-terminated		
VAPK3HD*75T	HD	3.5"	Terminated		
VAPK3HD*NT	HD	3.5"	Non-terminated		
VAPK3SD*75T	SD	3.5"	Terminated		
VAPK3SD*NT	SD	3.5"	Non-terminated		
Modules					
VMAFN	MT Style		4- YMT334BN jacks		
VMVHD*75T	HD		2- HD terminated jacks		
VMVHD*NT	HD		2- HD non-terminated jacks		
VMVSD*75T	SD		2- SD terminated jacks		
VMVSD*NT	SD		2-SD non-terminated jacks		
* Add "N" for non-normalled version					

Downloaded from **Elcodis.com** electronic components distributor

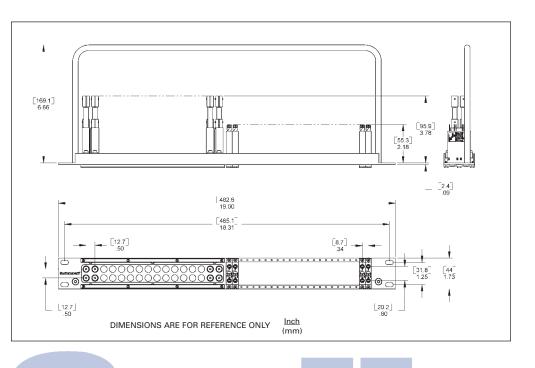
42 MVEZN Audio/Midsize Patchbay Series

Features and Benefits

- Combines 16 midsize video jacks and 24 dual EZ Norm bantam jacks.
- Video jacks are rated from DC to 3.0 GHZ.
- Rugged, attractive anodized aluminum frame for increased reliability.
- All audio jacks utilize EZ Norm technology for easy normal reconfiguration. A simple twist of the normal cam changes the normal function from full, to half, to no normals.
- Cable tie bar removes weight off the rear terminations.
- Large designation strips for easy patch point identification.


Video Jack Specifications

See page 39 for details


Audio Jack Specifications

See page 10 for details

Part Number: MVEZNPK175T

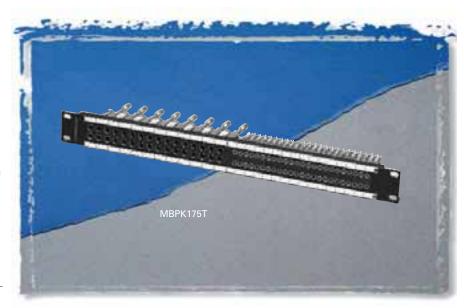
The MVEZN Series combines our popular MVJ midsize video jacks with our latest bantam jack, the EZ Norm. This patchbay has 16 video jacks and 24 dual EZ Norm bantam jacks. Perfect for application where a full video and audio patchbay are unnecessary. The video jacks are rated up to 3.0GHz, and the audio jacks meet 30,000 cycles, both in insertion/withdrawals and with the normal cam.

MBPK Video/Audio Patchbay Series 43

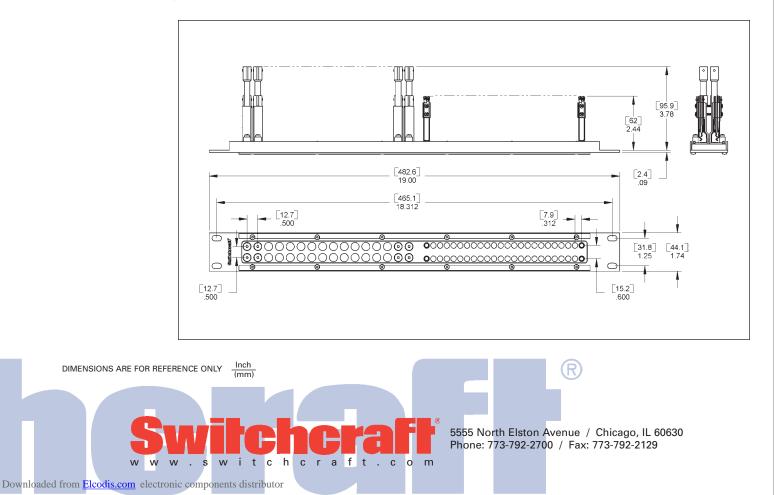
Features and Benefits

- Combines 16 midsize video jacks ٠ and 48 TT bantam audio jacks.
- Video jacks are rated from DC to • 3.0 GHZ.
- All audio jacks are nickel-plated with steel frames and gold-plated crossbar switching contacts.
- Rugged, attractive anodized aluminum ٠ frame for increased reliability.
- Large designation strips for easy patch point identification.
- Audio jacks rated at 30,000 cycles.

Video Jack Specifications


See page 39 for details

Audio Jack Specifications


See page 69 for details

Materials

Frame: Aluminum, black anodized

The MBPK Series combines our popular MVJ midsize video jacks with our standard nickel-plated, steel frame audio jacks. This patchbay combines 16 midsize video jacks with 48 TT bantam audio jacks. Perfect for applications where a full video and audio patchbay are unnecessary. The video jacks are rated up to 3.0GHz, and the audio jacks meet 30,000 cycles. The audio jacks have T, R, S, TN, and RN terminals, and feature gold-plated contacts and flared solder terminals.

PATCHCORDS/MOLDED CABLES

44 Audio and Video Patchcords

Features and Benefits - Audio

- 110 ohm impedance-matched digital patchcords meet AES/EBU interface standards for digital patching
- Available with a variety of plug terminations, plug finishes, cord lengths and cable colors, the patchcords offer design flexibility
- Premium quality cable insures high reliability and greater flexibility

Specifications

Standard plug terminations are single 3-conductor 1/4" and TT® Nickel-plated plugs (standard), brass and gold-plated (optional) Cable jacket material is PVC. Black is standard with other colors available

Features and Benefits - Video

- Designed and built to highest quality standards for efficient video signal transmission
- Cable type is RG59 (75W)
- Rugged nickel-plated handles with knurled area for positive finger grip
- Available in standard size or midsize styles

Specifications

Materials

Housing: Nickel-plated, copper alloy Contact Pin: Gold-plated, copper alloy Boot: Thermoplastic, in black and colors

A wide variety of audio patchcords and molded cable assemblies are available. Some of the more popular versions are the 18Q and 20Q Series for professional 1/4" patching, the TT* and TTD Series for TT or bantam AES/EBU digital patching. The VP and VMP Series offer exceptional performance for video signal patching.

Ordering Information

Video Patchcords					
Part Number	Туре	Part Number	Туре		
VP3**	Standard	VMP2**	Midsize		
VP4**	Standard	VMP3**	Midsize		
VP5**	Standard	VMP4**	Midsize		
VP6**	Standard	VMP5**	Midsize		
VP7**	Standard	VMP6**	Midsize		
VP8**	Standard	VMP7**	Midsize		
VP9**	Standard	VMP8**	Midsize		
VP10**	Standard	VMP9**	Midsize		
VSPP	Standard	VMP10**	Midsize		
VMP1**	Midsize	VMPP	Midsize		

When ordering, add the following for cable color: BK-Black, BL-Blue, R-Red, O-Orange, Y-Yellow, GN-Green, P-Purple, GY-Gray

* Please visit the product pages on our website for the most up-to-date product information

PATCHCORDS/MOLDED CABLES

Audio and Video Patchcords 45

Ordering Information

Part Num	ber Type	Plug Finger	Description
Audio Pat	chcords		
18QD18	1/4" Mil-Type	Brass 2	2 foot, black nylon jacket
18QF18	1/4" Mil-Type	Brass 3	3 foot, black nylon jacket
18QH18	1/4" Mil-Type	Brass	4 foot, black nylon jacket
20QD20N*	1/4" Mil-Type	Nickel 2	2 foot, nylon jacket
20QF20N*	1/4" Mil-Type	Nickel 3	3 foot, nylon jacket
20QH20N*	1/4" Mil-Type	Nickel	4 foot, nylon jacket

When ordering, add the following for cable color: 0-Black, 2-Red, 5-Green, 6-Blue

TT122	TT or Bantam	Brass	1 foot, molded gray jacket
TT124	TT or Bantam	Brass	2 foot, molded gray jacket
TT126	TT or Bantam	Brass	3 foot, molded gray jacket
TT127	TT or Bantam	Brass	4 foot, molded gray jacket
TT128	TT or Bantam	Brass	5 foot, molded gray jacket

AES/EBU 110 Ohm Digital Single Plug Patchcords

		J	
TT1*	TT or Bantam	Nickel	1 foot, molded
TT2*	TT or Bantam	Nickel	2 foot, molded
TT3*	TT or Bantam	Nickel	3 foot, molded
TT4*	TT or Bantam	Nickel	4 foot, molded
TT5*	TT or Bantam	Nickel	5 foot, molded
TT6*	TT or Bantam	Nickel	6 foot, molded
TT7*	TT or Bantam	Nickel	7 foot, molded
TT8*	TT or Bantam	Nickel	8 foot, molded
TT9*	TT or Bantam	Nickel	9 foot, molded
TT10*	TT or Bantam	Nickel	10 foot, molded

AES/EBU 110 Ohm Digital, or RS422 Dual Plug Patchcords

TTD1*	TT or Bantam	Nickel	1 foot, molded	
TTD2*	TT or Bantam	Nickel	2 foot, molded	
TTD3*	TT or Bantam	Nickel	3 foot, molded	
TTD4*	TT or Bantam	Nickel	4 foot, molded	
TTD5*	TT or Bantam	Nickel	5 foot, molded	
TTD6*	TT or Bantam	Nickel	6 foot, molded	
TTD7*	TT or Bantam	Nickel	7 foot, molded	
TTD8*	TT or Bantam	Nickel	8 foot, molded	
TTD9*	TT or Bantam	Nickel	8 foot, molded	
TTD10*	TT or Bantam	Nickel	10 foot, molded	

When ordering, add the following for cable color: BK-Black, BL-Blue, R-Red, O-Orange, Y-Yellow, GN-Green, P-Purple, GY-Gray

witch

c r

a f t

.

c o m

Ordering Information

Part No.	Description			
Molded MIC	DI Cables			
MD3	3 foot, 5 pin DIN, molded black			
MD6	6 foot, 5 pin DIN, molded black			
MD10	10 foot, 5 pin DIN, molded black			
MD15	15 foot, 5 pin DIN, molded blac			

Uses 4 cond., 24 awg, PVC outer jacket, braided shielded cable

1/4" Cables

1/4 Cables	
05AD05	2 foot, mono, male to male
05AK05	6 foot, mono, male to male
05AN05	10 foot, mono, male to male
05AU05	25 foot, mono, male to male
05AN15	10 foot, mono, male to RA male
05AN80	10 foot, mono, male to female
05AU80	25 foot, mono, male to female
10BF10	3 foot, stereo, male to male
10BK10	6 foot, stereo, male to male
10BN10	10 foot, stereo, male to male
15AK15	6 foot, mono, RA male to RA male
RCA	
25AF25	3 foot, male to male
25AK25	6 foot, male to male
25AN25	10 foot, male to male
25AK82	6 foot, male to female
30AK30	6 foot, RA male to RA male
30AN30	10 foot, RA male to RA male
30AR30	15 foot, RA male to RA male
1/4" to RCA	
05AK25	6 foot, 1/4" male to RCA male
05AN25	10 foot, 1/4" male to RCA male

Uses either single or 2 cond, 22awg, PVC outer jacket, braided shielded cable

DIMENSIONS ARE FOR REFERENCE ONLY (mm)

5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129

(R)

www.s

46 Q-G[®] Audio Connector Series A, AA, AAA Cord Style Series

Switchcraft offers a wide range of cord style XLR connectors.

The A Series features a dual pressure plate strain relief mechanism to securely fasten the connector to the cable. The A Series is also available with FAS-DISCONNECT detent.

The AA Series features a 1-piece strain relief mechanism that clamps onto the outer jacket of the cable.

The AAA Series features a twist-on handle with a built-in strain relief mechanism and a pre-loaded insert. The new R Series offers the same strain relief system as the AAA Series.

Specifications

Electrical

Contact Resistance: 50 milliohm maximum, per pole

Current Rating @ 125VAC: 3 pole - 15A, 4 pole -10A, 5 & 6 pole - 7.5A, 7 pole - 5A

Insulation Resistance: 1,000 MW, minimum

Dielectric Withstanding Voltage: 1,000 V (rms)

Capacitance: ≤3pF between pins and ≤6 pF between pins and shell, maximum

Mechanical

Insertion/Withdrawal Forces: 10 lbs. maximum, 8 lbs. nominal/ 7 lbs. maximum, 5 lbs. nominal

Materials

Shell: Die-Cast zinc with nickel finish or black chrome

Handle: Die cast with nickel finish or black chrome. Also black thermoplastic handle available

O Ring: TPR (Thermoplastic rubber). Insert Insulation: Molded

thermoplastic

Socket Contacts: Silver plated copper alloy tarnish resistant; bifurcated on 3 and 4 contact types. Gold is available. Pin Contacts: Silver plated

copper alloy.

See Page 56 for **Mechanical Drawings**

Resists tarnishing, and provides excellent electrical conductivity. Gold is available.

Latch lock: High strength die cast zinc Multi-finger cable clamp and rubber

gasket: TPR (Thermoplastic plastic & rubber) Flex Relief: TPR (Thermoplastic rubber)

Ordering Information

		Pins/	
Style	Finish	Contacts	Notes
Cord	Nickel	Silver	Standard Cable Clamp
Cord	Black	Silver	Standard Cable Clamp
Cord	Black	Gold	Standard Cable Clamp
Cord	Nickel	Silver	Standard cable clamp, large flex relief
Cord	Nickel	Silver	One piece cable clamp
Cord	Black	Silver	One piece cable clamp
Cord	Black	Gold	One piece cable clamp
Cord	Nickel	Silver	One piece cable clamp, large flex relief
Cord	Nickel	Silver	Twist-on metal handle
Cord	Black	Silver	Twist-on metal handle
Cord	Black	Gold	Twist-on metal handle
Cord	Nickel	Silver	Twist-on plastic handle
Cord	Black	Silver	Twist-on plastic handle
Cord	Black	Gold	Twist-on plastic handle
	Cord Cord Cord Cord Cord Cord Cord Cord	CordNickelCordBlackCordBlackCordNickelCordNickelCordBlackCordBlackCordNickelCordNickelCordBlackCordBlackCordBlackCordBlackCordBlackCordBlackCordBlackCordBlackCordBlackCordBlackCordBlackCordBlackCordBlack	StyleFinishContactsCordNickelSilverCordBlackGoldCordBlackGoldCordNickelSilverCordNickelSilverCordBlackGoldCordBlackGoldCordBlackGoldCordBlackGoldCordBlackGoldCordNickelSilverCordNickelSilverCordBlackGoldCordBlackGoldCordBlackSilverCordBlackSilverCordBlackSilverCordBlackSilverCordBlackSilverCordBlackSilver

Available 3 - 7 pins or contacts

Q-G[®] Audio Connector Series 47 B, C, D, E Panel Style Series

D*MS D*MBAU E3FSC *MB B*MB

Ordering Information

Part Number	Style	Finish	Pins/ Contact	s Notes
B*F, B*M	Panel	Nickel	Silver	Threaded Collar
B*FB, B*MB	Panel	Black	Silver	Threaded Collar
C*F, C*M	Panel	Nickel	Silver	Uses #5-40 mounting screws
C*FB, C*MB	Panel	Black	Silver	Uses #5-40 mounting screws
D*F, D*M	Panel	Nickel	Silver	Uses #5-40 mounting screws
D*FB, D*MB	Panel	Black	Silver	Rectangle housing
D*FBAU, D*MBAU	Panel	Black	Gold	Rectangle housing
D*FS, D*MS	Panel	Nickel	Silver	Rectangle housing, smooth finish
E3FSC, E3MSC	Panel	Nickel	Silver	Male/Female same panel cut-out
E3FSCB, E3MSCB	Panel	Black	Silver	Male/Female same panel cut-out
E3FSCBAU, E3MSCBAU	Panel	Black	Gold	Male/Female same panel cut-out

a f t

.

c o m

c r

* Available 3 - 7 pins or contacts

See Page 57 for Mechanical Drawings

ww.s

witch

Switchcraft also offers a wide range of panel mount connectors.

The B Series features a round housing with a threaded collar for mounting. The female version requires a spanner wrench to tighten the connector to the chassis. Both male and female are available with black finish.

The C Series is another round housing panel mount, which has 0.140" mounting holes requiring #5-40 screws to mount.

The D Series, our most popular version, is a rectangle housing panel mount. The standard Rawall finish resists scratching, while the optional satin finish offers a smooth finish for mounting on a brushed finished chassis.

The E Series offers a panel mount with quick release inserts. A small screwdriver is used to remove the inserts, allowing for easy gender changes. The male and female E Series fit into the same panel cut-outs.

The E Series is also available with PC terminals. Contact the factory for details.

5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129

(R)

48 Q-G[®] Audio Connector Series J, K, P, R, T Wallplate, Gooseneck, Panel & Cord Style Series

The J and K Series are wallplates using the D Series receptacles pre-mounted. Available in single or dual connector versions.

The PD Series is a plastic panel mount series, using 94V-0 rated material. Both male and female mount into the same panel cut-out and are available in solder cup, straight PC, and right angle PC terminals.

Switchcraft also offers gooseneck connectors and cord plugs with on-off switches. The P Series are gooseneck connectors available in male or female, with optional black finishes. The male has external 5/8-27 threads, the female has internal 5/8-27 threads.

The new R Series incorporates the same strain relief system as the AAA Series. The insert can be offset at 45° to accommodate a wide variety of applications.

The T Series is similar to the A Series female cord plug, but offers a DPDT (2-C) locking on-off switch. The slide switch is rated at 500mA, 125V.

Ordering Information

Part Number	Style	Finish	Pins/ Contacts	Notes
J3FS	Wallplate	Nickel	Silver	Single D3F
K3FS	Wallplate	Nickel	Silver	Dual D3F's
P*F, P*M	Gooseneck	Nickel	Silver	Female ext. threads,
				male int.threads
P*FB, P*MB	Gooseneck	Black	Silver	Female ext. threads,
				male int.threads
PD3FSC1, PD3MSC1	Panel	Black	Silver	Plastic Housing
PD3FSC1AU, PD3MSC1A	J Panel	Black	Gold	Plastic Housing
R*FZ, R*MZ	Cord	Nickel	Silver	Right Angle
R*FBZ, R*MBZ	Cord	Black	Silver	Right Angle
R*FBAUZ, R*MBAUZ	Cord	Black	Gold	Right Angle
T3F	Cord	Nickel	Silver	On-off switch

* Available 3 - 7 pins or contacts

See Pages 58 and 59 for Mechanical Drawings

Materials

Housing: Plugs and Male Receptacles — Copper alloy, nickel-plated; Female Receptacles — Die-cast zinc, nickel-plated Black Tini-Q-G® Housing: Copper alloy, black chrome-plated Pin and Socket Contacts: Copper alloy, silver-plated Flex Relief: Molded black thermoplastic elastomer Latch Button: Molded black thermoplastic Release Lever and Mounting Washer: Steel, nickel-plated Standoff/Ground Terminal and Cable Clamp: Steel, electrotinned Inserts and Insulating Spacer: Molded, high strength thermoplastic Latch (Female): Copper alloy, nickel-plated Mounting Nut: Copper alloy, nickel-plated

Ordering Information

Part Number	Style	Finish	Pins/ Contacts	Notes
TA*F, TA*M	Cord	Nickel	Silver	Available in 3 - 6 pins or contacts
TA*FL, TA*ML	Cord	Nickel	Silver	Accommodates large cable, available in 3 - 8 pins or contacts
TA*FB, TA*MB	Cord	Black	Silver	Available in 3 - 6 pins or contacts
TB*M	Panel	Nickel	Silver	Male, round flange, threaded, available in 3 - 8 pins or contacts
TB*MB	Panel	Black	Silver	Male, round flange, threaded, available in 3 - 8 pins or contacts
TY*F	Panel	Nickel	Silver	Female, rectangle flange, available in 3 - 5 pins or contacts

a f t

c o m

c r

See Page 59 for Mechanical Drawings

w w

. S

witch

The Tini-QG Series is a miniature version of the standard QG Series. These "mini-XLR's" come in a wide variety of configurations. The standard TA Series cord plugs are available in 3-6 pins or contacts. The L versions, with their larger strain reliefs, are available in 3-8 pins or contacts. The TB and TY Series are panel mount connectors. The TB Series is a male connector, featuring a round panel cut-out and 3-8 pins. The TY Series is a female connector, featuring a rectangular housing and 3-5 contacts. The TA and TB Series are available with a black finish. Gold-plated contacts are available on all series. Contact the factory for details.

Specifications

Tini-Q-G[®] Cord & Panel Style Series

Electrical

Contact Resistance: .010 ohms maximum after life (and after salt spray) Current Rating (Carry Only): 5A, 125 VAC (4A, 125 VAC on 5 circuit) based on 30°C maximum Insulation Resistance: 510,000 megohms minimum @ 500 VDC (initial); 10,000 megohms minimum (after humidity test) Dielectric Strength: 1,000V (rms)

Mechanical

Life: 5,000 operations minimum Solderability Standard: Meets EIA RS-186-9E

Mechanical Shock: Meets Mil-Std-202, method 213B

- Vibration: Meets Mil-Std-202, method 201A
- Wire Size: #22 wire gauge solid; #24 wire gauge stranded

Environmental

Thermal Range: -55°C to +85°C Humidity: Meets Mil-Std-202, method 106D Thermal Shock: Meets Mil-Std-202, method 107D Salt Spray: Meets Mil-Std-202, method 101

5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129

HPC Connector Series **HPC Panel Style Series**

The HPC Series is a complete line of high power loudspeaker connectors that are completely compatible with the Neutrik[®] Speakon[®] 4 pole connector series. Included in the series are round and rectangular panel mounts, straight cord plugs, right angle cord plugs, and in-line cord plug, plus a barrel adapter.

The HPC panel mounts come with two different flange depths, either 0.100" or 0.200" depths. The 0.200" depth allows for easy rear mounting of the connector and maintains proper mating with the cord plug. Also, the panel mounts have two different Faston® terminal sizes, 0.187" and 0.250" wide. Both are rated at 50A, per UL 1977. The PC mount versions have either straight, right angle, or right angle with a mounting post. They are rated at 30A per UL 1977. The right angle PC mount version with the post allows for snap-in placement onto the PC board during wave soldering.

The HPC cord plugs are offered in straight, right angle, and an in-line version. All have 0.250" Faston® terminals, rated at 50A per UL 1977, which makes it easy to swap out plugs. The unique feature of the cord plugs is their "push to lock" design. They do not require a 1/4 turn to engage the contacts - simply push the connector in like an XLR. This feature eliminates the need to remember to turn the connector to make contact with the contacts. To disengage, simply push the latch lever forward and pull the connector out. The straight cord plug uses a twist on handle, while the in-line and right angle cord plugs use a snap-in handle. The in-line connector mates with both straight and right angle cord plugs.

For those who find it more convenient, we also offer a barrel adapter which mates with either straight or right angle cord plugs.

Ordering Information

Part Number	Style	Notes		
HPCP41F	Panel	Rectangle, 0.100" flange depth, 0.250" faston terms		
HPCP42F	Panel	Rectangle, 0.200" flange depth, 0.250" faston terms		
HPCP41F1	Panel	Rectangle, 0.100" flange depth, 0.187" faston terms		
HPCP42F1	Panel	Rectangle, 0.200" flange depth, 0.187" faston terms		
HPCP410PC	Panel	Rectangle, 0.100" flange depth, straight PC terms		
HPCP420PC	Panel	Rectangle, 0.200" flange depth, straight PC terms		
HPCP410RA	Panel	Rectangle, 0.100" flange depth, right angle PC terms		
HPCP420RA	Panel	Rectangle, 0.200" flange depth, right angle PC terms		
HPCPR41F	Panel	Round, 0.100" flange depth, 0.250" faston terms		
HPCPR42F	Panel	Round, 0.200" flange depth, 0.250" faston terms		
HPCPR41F1	Panel	Round, 0.100" flange depth, 0.187" faston terms		
HPCPR42F1	Panel	Round, 0.200" flange depth, 0.187" faston terms		
HPCPR410PC	Panel	Round, 0.100" flange depth, straight PC terms		
HPCPR420PC	Panel	Round, 0.200" flange depth, straight PC terms		

See Pages	61 and	62 for	Mechanical	Drawings
-----------	--------	--------	------------	----------

Speakon® is a registered trademark of Neutrik Inc.

Ordering Information

Part Number	Style	Notes
HPCC4F	Cord	Straight with 0.250" faston terms
HPCI4F	Cord	Inline with 0.250" faston terms
HPCC4RAF	Cord	Right angle with 0.250" faston terms
HFCC4RAF	Cora	Right angle with 0.250 Taston terms

a f t

.

c o m

c r

See Page 62 for Mechanical Drawings

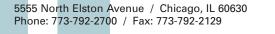
Specifications

Mechanical (Panel and Cord Mounts)

Shock: Per Mil-Std 202, Method 213B, Cond. K Vibration: Mil-Std 202, Method 201A Life: 1,000 rotational cycles Cable Range (cord mount): 10AWG, 0.560" cable OD maximum

Electrical (Panel and Cord Mounts)

Voltage Rating: 1,500 AC RMS, per Mil-Std 202, Method 301 Current Rating (Faston® terminals): 50A RMS w/10AWG wire, normal ambient, per UL 1977 Current Rating (PC terminals): 30A per UL 1977 Contact Resistance: $1m\Omega$, $1.5m\Omega$ after 1,000 insertion/withdrawals Insulation Resistance: > 2T Ω


Environmental (Panel and Cord Mounts)

Salt Spray: Mil-Std 202, Method 101D, Cond. B Thermal Shock: Mil-Std 202. Method 107G Temperature Limits: -55°C to +85° C Moisture Resistance: Mil-Std. 202, Method 106E Life @ Ambient Temperature: Mil-Std 202, Method 108A Touchproof: IEC 65 and 1010-1 IP Rating: IEC 529, IP 25

Materials (Panel and Cord Mounts)

Housings:

Thermoplastic UL 94V-0 rated Seal Rings: Thermoplastic rubber Contacts: Silver-plated over copper alloy

R

ww.s

witch

52 EH Series Receptacles

The EH Series consist of different styles of popular connectors in our E Series housing. This allows the end user to punch one single hole size and populate wall plates, gang assemblies with different types of connectors. Connector styles include BNC feed-throughs, RCA feed-throughs, USB feed-throughs, IEEE 1394 Firewire feed-throughs, BNC to solder cup, and RCA to BNC.

Features

- Utilizes same panel cut-out as E Series QG connectors
- Rugged metal shells
- Available with a wide variety of popular feed-through connectors

Ordering Information

Part Number	Description			
EHBNC2	BNC to BNC			
EHBNCSC	BNC to solder cup			
EHRCA2	RCA to RCA			
EHRCABNC	RCA to BNC			
EHUSB2	USB to USB			
EH13942	IEEE1394 to IEEE1394			
EHCAT62	Cat6 to Cat6			

Note: For black finish add 'B' suffix See Page 55 for Mechanical Drawings

MIDI and 2500 Series 53

The 5-pin DIN connector has been adopted by the audio industry as the standard MIDI (Musical Instrument Digital Interface) connector. Switchcraft offers a wide variety of DIN and mini-DIN connectors, however, only the 5-pin DIN versions are shown in this catalog. The more popular versions used in the audio industry include straight metal, straight plastic, and right angle cord plugs, as well as metal chassis and plastic right angle PC mount versions.

The 2500 Series microphone connectors are still used in many retro-style microphones. Cable mount versions can accommodate cable OD's up to 0.281".

Specifications

Materials

- Shell: Die-cast zinc alloy, nickel plated
- **Receptacle Mounting Flange:** Steel

Receptacle Body: Plastic Insert Material: Plastic Socket Contacts: Tin-plated Pin Contacts: Tin-plated Switching Contacts: Silver-plated Cable Relief Bushing: Soft plastic

Ordering Information

Part Number	Style	Notes	
05BL5M	Cord	Male, straight, metal handle	
05GM5M	Cord	Male, straight, plastic handle	
05DL5M	Cord	Male, right angle, metal handle	
57GB5F	Panel	Female	
57PC5F	Panel	Female, right angle, PC mount	
57PC5FS	Panel	Female, right angle, PC mount, shielded	
2501F	Cord	Female, single contact, locking collar	
2501M	Cord	Male, single contact, ext. threads	
2501MP	Panel	Male, single contact, ext. threads	

See Page 60 for **Mechanical Drawings**

Downloaded from Elcodis.com electronic components distributor

w w

. S

Phone: 773-792-2700 / Fax: 773-792-2129

R

54 HP75BNC Series True 75 Ohm BNC Series

The HP75BNC Series is a true 75 Ohm impedance BNC connector series. All connectors meet stringent guidelines for top performance. The HP75BNC Series is available in a wide variety of cable types. All use standard crimping tools.

Features and Benefits

- True 75 Ohm impedance
- Rugged nickel-plated, machined housings
- Gold-plated center pins enhance
 performance

Specifications

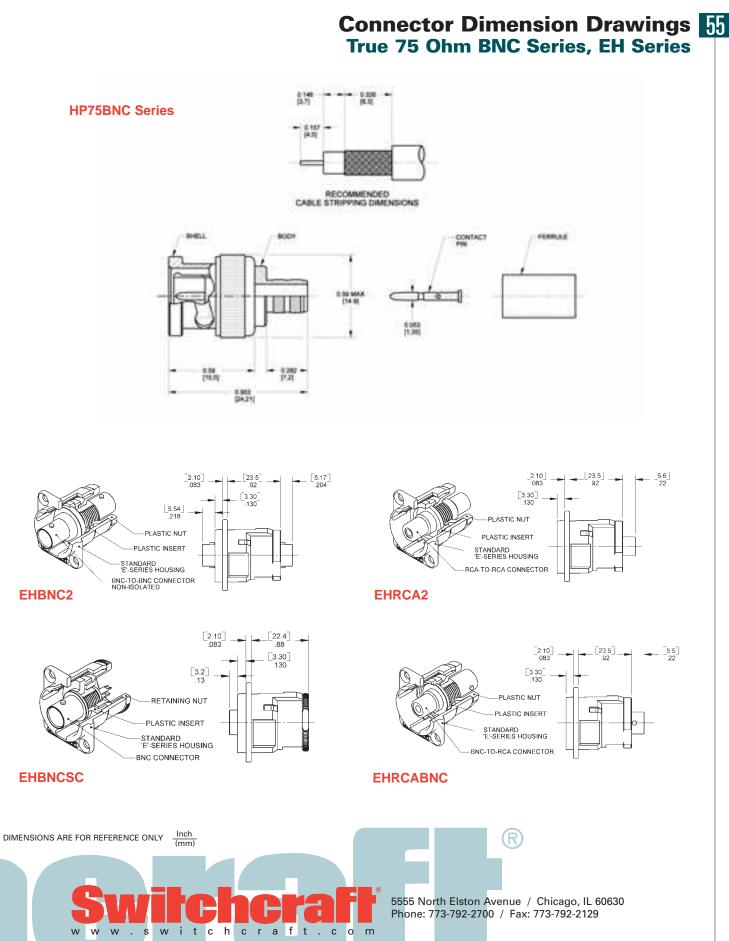
Electrical

Contact Resistance: 75 Ohms Voltage Rating: 500 Volts RMS Return Loss: Less than -25 db at 3 GHz Insulation Resistance: 5000 Megohms minimum

Mechanical

Lifecycles: 500 minimum Center Contact Retention: 6 lbs. minimum Coupling Mechanism: 100 lbs. minimum Force to Engage: 2.5 lbs. maximum

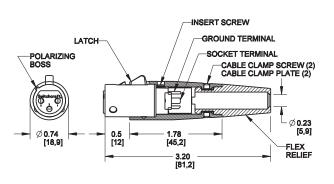
Environmental


Thermal Range: -65°C to 165°C Moisture Resistance: Mil Std 202 Corrosion: Mil Std 202 Flammability: UL 94-V0 Vibration: Mil Std 202 Solvent Resistance: Mil Std 202

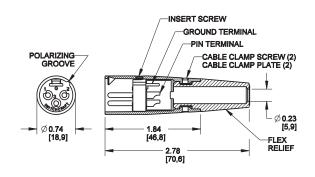
Finish

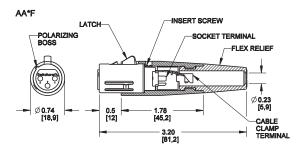
Body/Bayonet: Nickel-plated, copper alloy Center Conductor: 50 mi gold-plated copper alloy

See Next Page for Mechanical Drawings

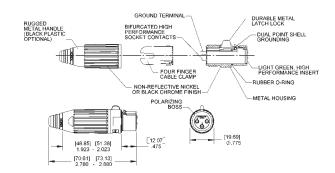

Part Number	Crimp Info	Cable Type
HP75BNC1	Pin .041 Hex	Belden 8241, 8279, 82241
	Ferrule .255	Gepco VJ59U
		Comm/Scope 5563
HP75BNC2	Pin .041 Hex	Belden 8281, 8281B, 9141, 88281, 9231, 8141,
	Ferrule .324 Hex	9118, 9248
		Gepco VP618PE, VP618PVC, VP6000
		Comm/Scope 7501, 7506
HP75BNC7	Pin .041 Hex	Belden 1694A, 1695A, 87120, 89120, 9066, 9114, 9659
	Ferrule .278 Hex	Gepco VSD2001, VSD2001TS
		Comm/Scope 5729 ,5765, 2227K, 2227V, 2229V,
		2275V, 2276V, 2279V
HP75BNC9	Pin .041 Hex	Belden 1505A, 1506A, 8212, 8241F, 9167, 9259,
	Ferrule .255 Hex	Gepco VPM2000, VPM2000TS, VPM2000TK
		Comm/Scope 2000, 5553, 5565, 5572
HP75BNC12	Pin .041 Hex	Belden 1855A, 1865A
	Ferrule .178 Hex	Gepco VDM230, VDM250, RGB230/250 Series
		Comm/Scope 7537, 7538

56 Connector Dimension Drawings Q-G[®] Audio - A, AA, AAA Series


A*F

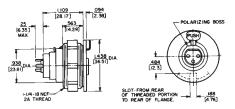

AA*F

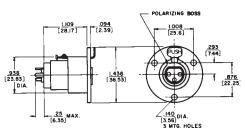
A*M


AA*M

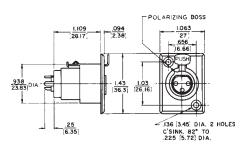
AA*M POLARIZING GROOVE Ø 0.74 [18,9] PINSERT SCREW PIN TERMINAL CABLE CLAMP TERMINAL CABLE CLAMP VOLARIZING CABLE CLAMP VOLARIZING CABLE CLAMP TERMINAL CABLE CLAMP VOLARIZING VOLARI

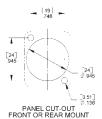
AAA*FZ

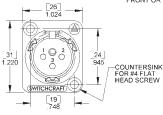

AAA*MZ


Downloaded from Elcodis.com electronic components distributor

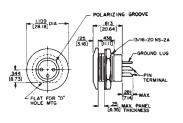
Connector Dimension Drawings 57 Q-G[®] Audio - B, C, D, E Series

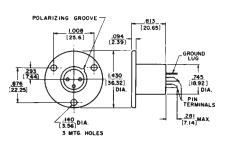

B*F

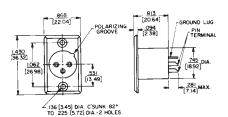




D*F

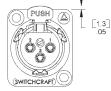


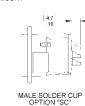

Downloaded from Elcodis.com electronic components distributor

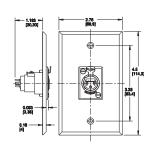


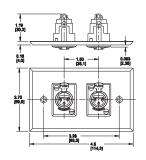
C*M

B*M



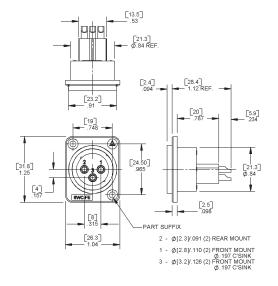

D*M

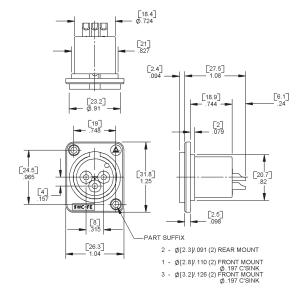


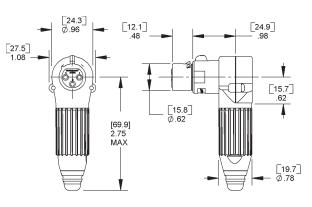

DIMENSIONS ARE FOR REFERENCE ONLY Inch (mm) State of the test of the test of the test of test

58 Connector Dimension Drawings Q-G[®] Audio - J, K, P, R Series

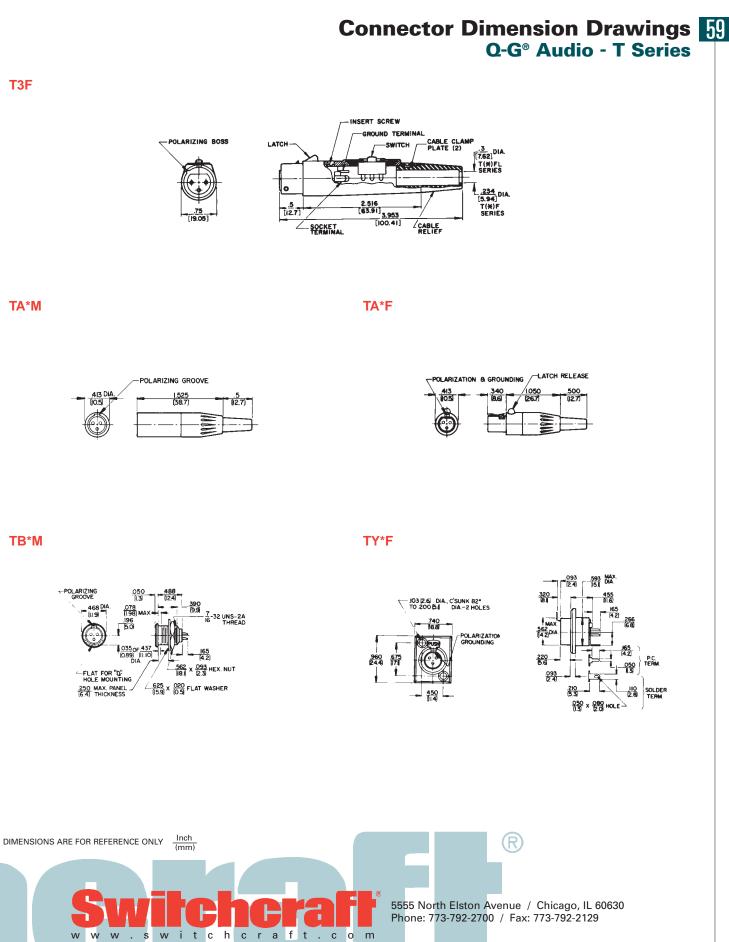
J3FS




K3FS


PD3MSC1AU

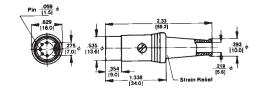
PD3FSC1AU

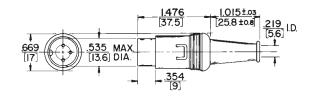


R*FZ

R*MZ

Downloaded from Elcodis.com electronic components distributor



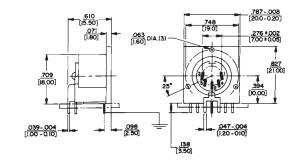

Downloaded from Elcodis.com electronic components distributor

Connector Dimension Drawings MIDI, Q-G[®] Audio - P Series

05BL5M

05GM5M

57GB5F


749 103 MAX 152 DIA HOLE 039 152 DIA HOLE 039 164 HOLE 039 164 HOLE 039 174 HOLE

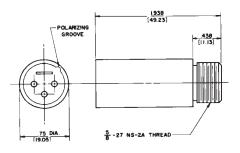
5/8-27 NS-28 TH'D.

777454755

.<u>563</u> [i4.3] FULL TH'D.

57PC5F

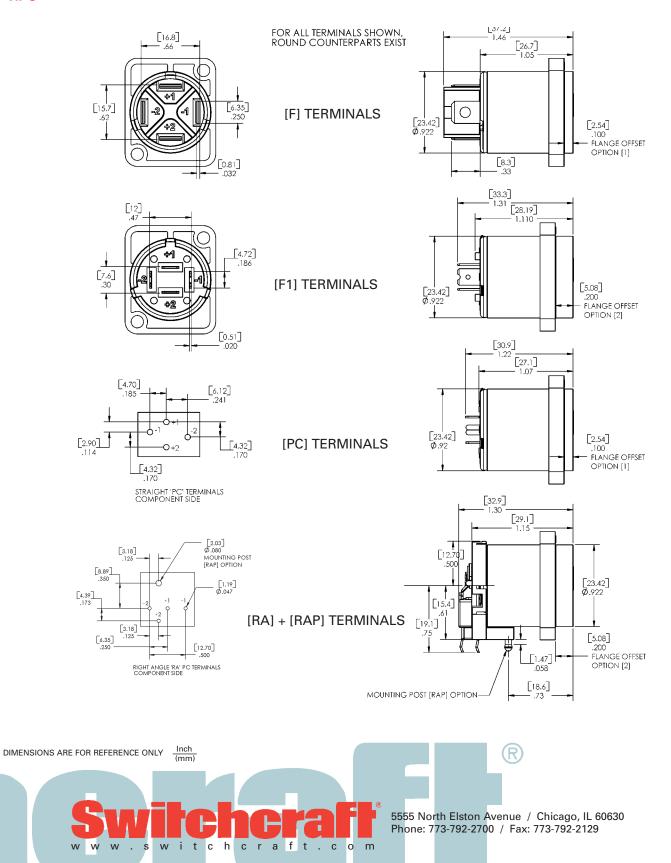
P*F

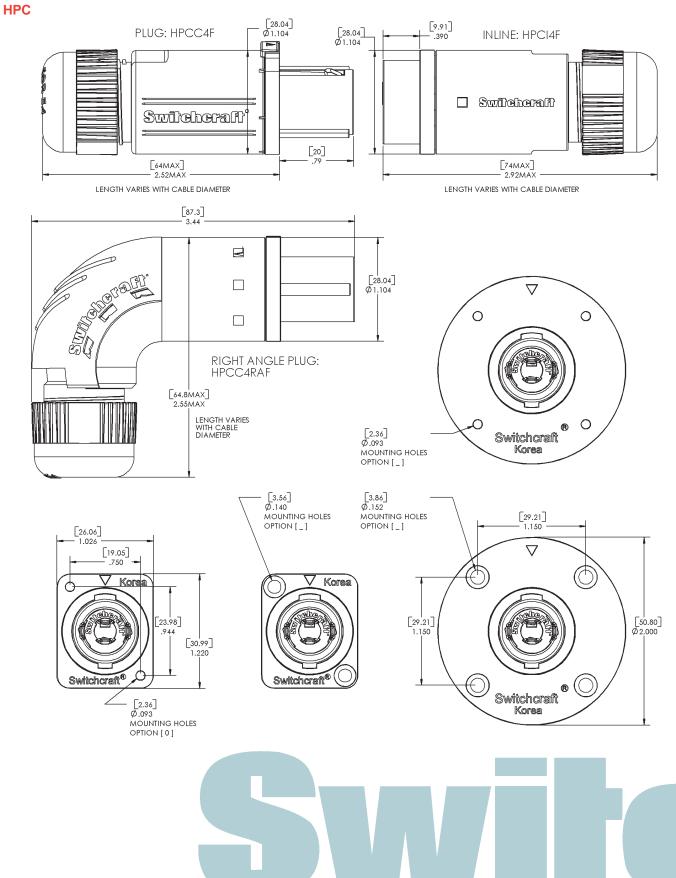

POLARIZING BOSS

0

<u>[12.7]</u>

2.25





Connector Dimension Drawings 61 HPC Panel Style Series

HPC

62 Connector Dimension Drawings HPC Panel Style Series

AUDIO ADAPTERS

XLR to XLR, RCA, 1/4," TQ-G Adapter Series 63

A wide variety of audio adapters are available from Switchcraft. Ranges include XLR to XLR, XLR to RCA, XLR to 1/4", along with a multitude of specialty adapters. Our DMX adapters allow users to adapt from 5 pin DMX controls to the more prevalent 3 pin XLR.

Ordering Information

Part Number	Description
XLR to XLR	
389	3 Pin female to 3 pin female
390	3 Pin male to 3 pin male
S3FM	3 Pin male to 3 pin female
S3F5M	3 Pin female to 5 pin male
S5F3M	5 Pin female to 3 pin male
XLR to RCA	
321	3 Pin female XLR to male RCA
322	3 Pin female XLR to female RCA
323	3 Pin male XLR to male RCA
324	3 Pin male XLR to female RCA
XLR to 1/4"	
383A	3 Pin female XLR to female 1/4", 3 cond.
384A	3 Pin male XLR to female 1/4", 3 cond.
386A	3 Pin female XLR to male 1/4", 3 cond.
387A	3 Pin male XLR to male 1/4", 3 cond.
XLR to TQ-G	
TA01	3 Pin XLR female to 3 pin TQG female
TA02	4 Pin XLR female to 4 pin TQG female
TA04	3 Pin XLR male to 3 pin TQG female
TA05	4 Pin XLR male to 4 pin TQG female

DIMENSIONS ARE FOR REFERENCE ONLY Inch (mm)

5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129

R

AUDIO ADAPTERS

1/4" to 1/4", RCA; RCA to RCA; & Miscellaneous Adapter Series

Ordering Information			
Part Number	Description		
1/4" to 1/4"			
361A	Mono female to female		
362A	Stereo female to female		
363	Mono male to male		
340	2 Mono jacks parallel to mono plug		
352A	Stereo jack to mono plug		
1/4" to RCA			
330P	2 RCA jacks to mono plug, 4" cable		
336A	Female 1/4" to male RCA		
345A	Female RCA to male 1/4"		
RCA to RCA			
330F1	2 Female RCA parallel to 1 male RCA		
330F2	1 Male and 1 female parallel to 1 male		
349A	Female to female		
Miscellaneous			
332A	Old MC1M type to 1/4" female		
365	Tini-Jax (.141") to RCA male		
370A	Female RCA to Tini-Plug (.141")		
374	1/4" female to Tini-Plug (.141")		
376	Tini-Jax (.141") to Micro-Plug (.097")		
377	Micro-Jax (.097") to Tini-Plug (.141")		
44	Female 2500 Series to 1/4" plug		

Jack Series 65 Littel Phone, Hi-D, Right Angle PC Mount 1/4", 1/4" Extension Jack Series

Switchcraft offers an extensive variety of 1/4" commercial jacks. Littel phone jacks offer open frame designs. Hi-D jacks offer an enclosed, 94V-0 rated thermoplastic housing, our RA jacks are designed for right angle PC board layouts, and our Extension jacks allow the end user to extend cable lengths. All offer a wide range of options to fit a multitude of needs. For mating plugs, look to page 83 for all of the various options.

Specifications

Mechanical

Life: 10,000 insertion/withdrawal cycles, minimum

Electrical

Contact Resistance: .030 ohms maximum (initial), .050 ohms maximum (after humidity, durability exposure) Per Mil-Std-202E

Insulation Resistance: 10,000 MW minimum (initial), 1,000 MW minimum (after humidity)

Dielectric Withstanding Voltage: 500V, 60 Hz (rms) AC

Contact Rating: 1A, 25 VDC

Environmental

Thermal Range: -55°C to +85°C (non-operating); -20°C to +65°C (operating)

Thermal Shock: Per Mil-Std-202, method 107

Humidity: Per Mil-Std-202, method 106 Salt Spray: Per Mil-Std 202, method 101

Materials

Mounting Bushing: Copper alloy, nickel-plated (RN & RA Series: Thermoplastic) Insulation: Rigid plastic Springs: Special copper alloy. Integral contacts are standard in the isolated switching circuits Sleeve Terminal: Copper alloy Hardware: Supplied with one Number P10001 copper alloy nickel-plated hex nut, and one Number S1022 steel nickel-plated washer

Downloaded from Elcodis.com electronic components distributor

See next page for ordering information

5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129

 (R)

66 Jack Series

Ordering Information

Part No.	Conductors	Typical Description	Mating Plug	Notes
Littel Phone	Jacks			
11	2	single open	280	
12A	2	single closed	280	
12B	3	double open	297	
14B	3	double closed	297	
Hi-D Jacks				
111	2	single open	280	
112B	3	double open	297	
113BPC1M	3	tip closed, ring open (common to sleeve)	297 or 482NC	PC terms, accepts Littel and Mil-type plugs
114B	3	double closed	297	
114BPC	3	double closed	297	PC terms
114BPCS	3	double closed	297	Springlock PC terms
114BPC1M	3	double closed	297 or 482NC	PC terms, accepts Littel and Mil-type plugs, metric thread
Z15J	2	single open	187B	15A rated
Right Angle	PC Mount 1/4"	Jacks		
RA49B11	2	single open	280	
RN112APC	2	single closed	280	
RA49C14B	3	double closed	297	
1/4" Extensio	on Jacks			
80	2	single open	280	Screw terms, black handle
88	2	single open	280	Solder terms, black handle
120	2	single open	280	Screw terms, shielded handle
121	2	single open	280	Solder terms, shielded handle
131	3	double open	297	Solder terms, shielded handle
133	3	double open	298	Solder terms, shielded handle, locking
830	3	double open	297	Screw terms, black handle
128	2	single open	280	Solder terms, shielded handle
1238	3	double open	297	Solder terms, shielded handle

See Pages 72–74 for Mechanical Drawings

Jack Series 67 Thick Panel/Guitar, Locking 1/4", Tini, Tini-Extension, Micro, 3.5mm

The TP or Thick Panel jacks are typically used in applications such as loudspeaker enclosures and solid-body guitars. Only premium materials are used in the manufacture of these jacks. Locking 1/4" jacks allow the end user to lock the mating plug, providing positive detent to the connection. Also offered is a wide range of 1/8" jacks and true 3.5mm jacks.

Specifications - Thick Panel Series & Locking Jacks

Electrical

Insulation Resistance: 2 x 106 MW at 500 VDC per Mil-Std-202, method 302 (initial) Dielectric Withstanding Voltage: 1,000 VAC (ms) Life: 10,000 cycles minimum

Environmental

- Thermal Range: -55°C to +85°C (non operating); -20°C to +65°C (operating)
- Thermal Shock: Per Mil-Std-202, method 107
- Humidity: Per Mil-Std-202, method 106
- Salt Spray: Per Mil-Std-202, method 101

Materials

- Shell Locking Jacks: Die-cast zinc, with satin nickel-plating; Black chrome over nickel-plating on special order
- Insert and Latch: Thermoplastic, UL94V-0
- Latch Release: Nickel-plated die-cast zinc

Contact Springs: Tin-plated copper alloy

Mounting Bushing - Thick Panel Jacks: Nickel-plated copper alloy with knurled flange Insulating Spacer: Rigid plastic

(continued on next page)

5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129

c o m

Downloaded from Elcodis.com electronic components distributor

w w . S witch

c r

aft.

68 Jack Series

(continued from previous page)

Insulator/Spring Mount: Thermo-plastic Springs: Copper alloy Terminals: Tip: Copper alloy; Ring: (Number 152B only) Copper alloy; Sleeve: Steel, tin-plated Hardware - Thick Panel Jacks: Supplied with one, Number P10531 nickel-plated copper alloy hex nut; and one, Number P1476 nickel-plated copper alloy flat washer

Specifications - 35RAPC Series

Electrical

- Contact Resistance: 20 milliohms maximum
- Insulation Resistance: 100 milliohms minimum at 250 VDC
- Dielectric Withstanding Voltage: 250 VAC
- Life: 5,000 cycles, minimum Insertion Force: 0.88 pounds -3.5 pounds
- Withdrawal Force: 0.88 pounds -2.64 pounds

Materials

Coil Spring: Steel Wire Bushing: Nickel-plated copper alloy Terminal: Silver-plated copper alloy Tip Spring: Silver-plated copper alloy Shunt Terminal: Plated copper alloy Cover: Thermoplastic, transparent UL 94V-2

Body: Thermoplastic, UL 94V-1 black color

Specifications - 35PM Series & Tini Jack Series

Electrical

- Contact Resistance: .075 ohms maximum Insulation Resistance: 5,000 MW
- minimum Dielectric Withstanding Voltage: 250 VAC maximum
- Life: 5,000 insertion/withdrawal cycles, minimum

Contact Rating: .25A, 48 VDC

Materials

Mounting Bushing: Nickel-plated copper alloy Insulating Spacers: Rigid plastic Springs: Copper alloy Sleeve Terminal: Tin-plated copper alloy Hardware: Supplied with one,

Ordering Information

Number P11501 nickel-plated brass locknut; and one, Number S17901 nickel-plated steel flat washer

			Typical	
Part No.	Conducto	rs Description	Mating Plug	Notes
Thick Pan	el/Guitar Ja	cks (1/4")		
151	2	single open	280	Nickel finish
152	3	double open	297	Brass finish
152B	3	double open	297	Nickel finish
153	2	single open	280	Gold-plated springs, electro-polish brass finish, 9/16-12 UNC wood thread
154	3	double open	297	Gold-plated, no cable clamp
155	3	double open	297	Black satin chrome finish, no cable clamp
Locking 1	/4" Jacks			
E111L	2	single open	280	
E112BL	3	double open	297	
Tini-Jacks	(.141")			
41	2	single open	750	
42A	2	single closed	750	
142A	2	single closed	750	
PC142A	2	single closed	750	PC terms
Tini-Exten	sion Jacks (.141")		
125	2	single open	750	
3.5mm Ja	cks			
35RAPC2A	/ 2	single closed		Threaded bushing, PC terms
35RAPC2B	-13 3	double open	35HDNN	Threaded bushing, PC terms
35RAPC3B	-13 3	tip closed, ring oper	n 35HDNN	Threaded bushing, PC terms
35RAPC4B	-13 3	double closed	35HDNN	Threaded bushing, PC terms
35RAPC7J	3	top jack dual open	35HDNN	Dual vertical jack bottom jack dual closed
35RAPC7JS	3	top jack dual open	35HDNN	Dual vertical jack, shielded bottom jack dual closed
35PM1	2	single open	750	
35PM2A	2	single closed	750	

See Pages 75-79 for Mechanical Drawings

Jack Series Phono, Phono Extension, TT or Bantam, MT 1/4" Jack Series

Phono jacks, more commonly called RCA jacks offer low cost, two conductor connections. TT or bantam jacks are the same type used in our audio patchbays. Typically used in high end studio applications. MT or 1/4" jacks are just a bigger version of the TT jacks. Same high quality, just in a larger package.

Specifications - Phono Jacks

Materials

- Frame and Shell: Steel, plated
- Center Terminal: Plated copper alloy (3517PC); Plated copper alloy (3514PC)
- Insulator: Thermoplastic (3514PC) Ceramic and glass filled thermoplastic (3517PC)

For 3515PC Only:

Contact and Saddle: Spring type copper alloy, copper alloy pre-tinned Shell: Steel or copper alloy, plated Insulator Bushing: Ceramic Insulator Spacer: Glass-filled thermoplastic

Specifications - TT and MT Jacks

Mechanical

- Life: Commercial 30,000 insertion/withdrawal cycles, minimum; Military 30,000 insertion/ withdrawal cycles, minimum
- Mechanical Shock: Military Per Mil-Std-202, method 213, Test Condition H (75g)
- Vibration: Military Per Mil-Std-202, method 213, (10-55 Hz)

Electrical

Contact Resistance: Commercial – .030 ohms maximum (initial), .050 ohms maximum (after humidity, durability, exposure); Military – .010 ohms maximum (initial), .020 ohms maximum (after life), .10 ohms maximum (after salt spray)

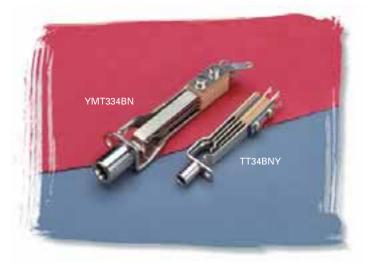
Insulation Resistance: Commercial – 10,000 MΩ minimum (initial), 1,000 MΩ minimum (after humidity); Military – 10,000 MΩ minimum (initial), 1,000 MΩ minimum (after humidity, durability exposure) Dielectric Withstanding Voltage: 500V, 60 Hz (rms) AC

w

it c h

c r

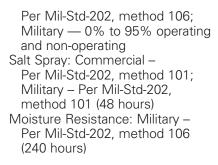
a f t


c o m

.

(continued on next page)

5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129


ww.s

70 Jack Series

(continued from previous page)

Environmental

Thermal Range: Commercial – 55°C to +85°C (non-operating), -20°C to +65°C (operating); Military – -55°C to +85°C (non operating), -40°C to +65°C (operating) Thermal Shocks: Commercial – Per Mil-Std-202, method 107; Military – Per Mil-Std-202, method 107 Humidity: Commercial –

Materials

Frame: Steel, nickel plated Springs: Copper alloy Contacts: Welded, crossbar, gold plated

Ordering Information

Part No.	Conductors	Typical Description	Mating Plug	Notes
Phono Jacks		-		
3501FP	2	single open	3502A	Front mounting
3501FR	2	single open	3502A	Rear mounting
3514PC	2	single open	3502A	Right angle, PC mount
3517PC	2	single open	3502A	Right angle, PC mount
BPJR**	2	single open	3502A	Rear mounting, colored insulators
BPJR**AU	2	single open	3502A	Same as above, with gold-plating
BPJF**	2	single open	3502A	Front mounting, colored insulators
BPJF**AU	2	single open	3502A	Same as above, with gold-plating
BPJJ**	2	single open	3502A	Feed through mount
BPJJ**AU	2	single open	3502A	Same as above, with gold-plating
Phone Extension Ja	cks			
3503	2	single open	3502A	
TT or Bantam Jacks	1			
TT34B	3	double closed	TT253NC	
TT34BNY	3	double closed	TT253NC	Nickel-plated frame, fanned terminals
WTT34B	3	double closed	TT253NC	Wire-wrap terminals
MT 1/4" Jacks				
MT334B	3	double closed	482NC	
WMT334B	3	double closed	482NC	Wire-wrap terminals
YMT334BN	3	double closed	482NC	Nickel-plated frame, fanned terminals

** To designate color of insulator, use: 01- Black, 02 - Red, 03 - White, 04 - Yellow, 05 - Blue, 06 - Green

See Pages 80-82 for Mechanical Drawings

Number P2439 nickel-plated

P2441 nickel-plated steel flat

washer

brass hex nut, and one Number

Low power AC to DC power jacks and plugs are used throughout the audio industry, to power a wide variety of products. Switchcraft offers both cord plug and panel mount versions, including locking and non-locking versions.

Specifications - Plugs

Electrical:

Current (Carry): 5 amps

Materials

- Plug Sleeve and Pin: Nickel-plated copper alloy Lock Ring: Nickel-plated copper alloy Lock Ring Thread Size: 5/16" -32 UNEF 2B Finger Insulator: Molded plastic Insulating Washers: Rigid plastic
- Sleeve Terminal: Copper alloy, electro-tinned Handle: Molded plastic Handle Thread Size: 5/16" -24 UNF 2B

Specifications - Jacks

Mechanical

Life: 10,000 insertion/withdrawal cycles minimum

Insertion/Withdrawal Forces: 3 pound insertion (maximum), 4 ounce minimum withdrawal

Electrical

Contact Resistance: .01 ohms maximum (initial), .02 ohms maximum (after humidity, durability exposure), .1 ohms maximum (after salt spray) Insulation Resistance: 10,000

MW minimum (initial), 1,000 MW minimum (after humidity, durability exposure) Dielectric Withstanding Voltage:

500 VAC maximum Contact Rating: 5A, 12 VDC resistive

Materials

Housing: Molded plastic Mounting Bushing and Hex Nut: Plated copper alloy Pin, Spring and Terminals: Plated copper alloy Insulators: Rigid plastic Hardware: Supplied with one

Ordering Information

Style	Notes	
Panel	0.100" center pin	
Panel	0.080" center pin	
Panel	0.050" center pin	
Cord	0.100" center hole, black handle	
Cord	0.100" center hole, red handle	
Cord	0.080" center hole, black handle	
Cord	0.080" center hole, red handle	
Cord	0.050" center hole, black handle	
Cord	0.050" center hole, red handle	
Cord	0.100" center hole, black handle, locking	
Cord	0.080" center hole, black handle, locking	
	Panel Panel Cord Cord Cord Cord Cord Cord Cord Cord	

See Next Page for Mechanical Drawings

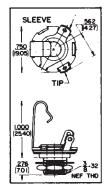
c o m

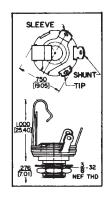
.

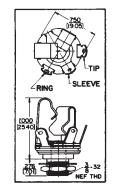
5555 No<mark>rth Elston A</mark>venue / Chicago, IL 60630 Phone: 7<mark>73-792-270</mark>0 / Fax: 773-792-2129

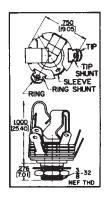
ww.s

w

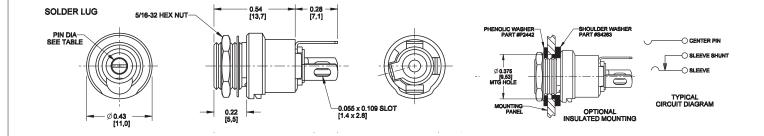

it c h


c r

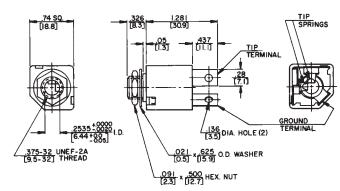

a f t


Jack Series Dimension Drawings Littel Phone, Hi-D, 1/4" Extension, 700 Panel Jack Series

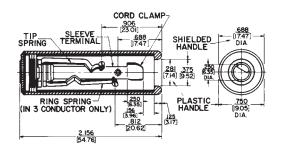
11, 12A, 12B, 14B


11 Series

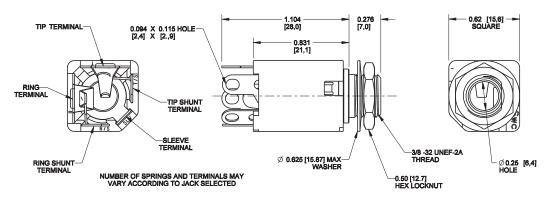
12A Series


12B Series

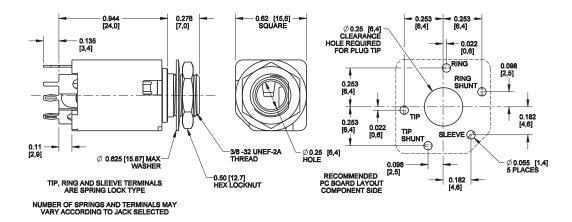
14B Series



Z15J

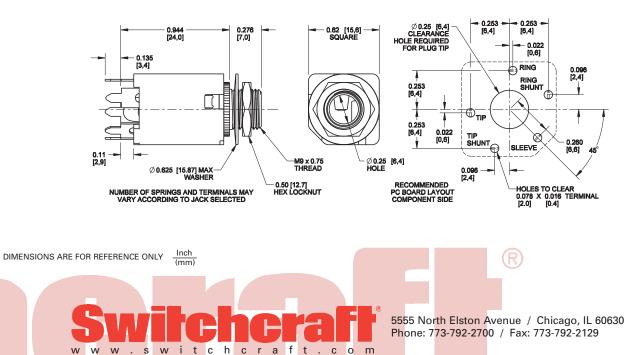


80



Jack Series Dimension Drawings 73 Littel Phone, Hi-D, 1/4" Extension Jack Series

Solder Lug Terminals for Hi-D Jax - 111, 112B, 114B



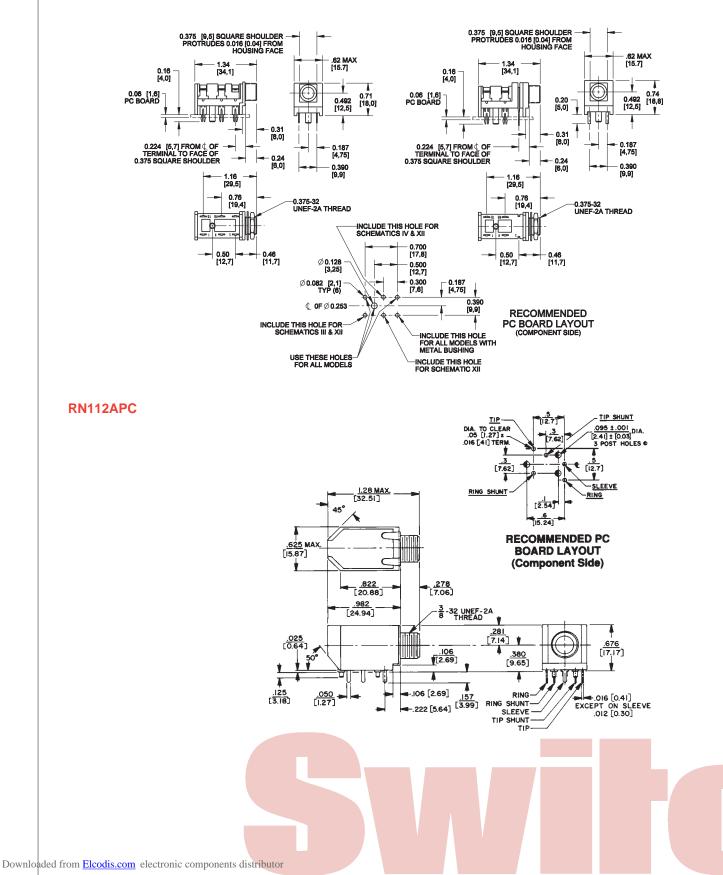
Spring Lock PC Terminals for Hi-D Jax - 114BPCS

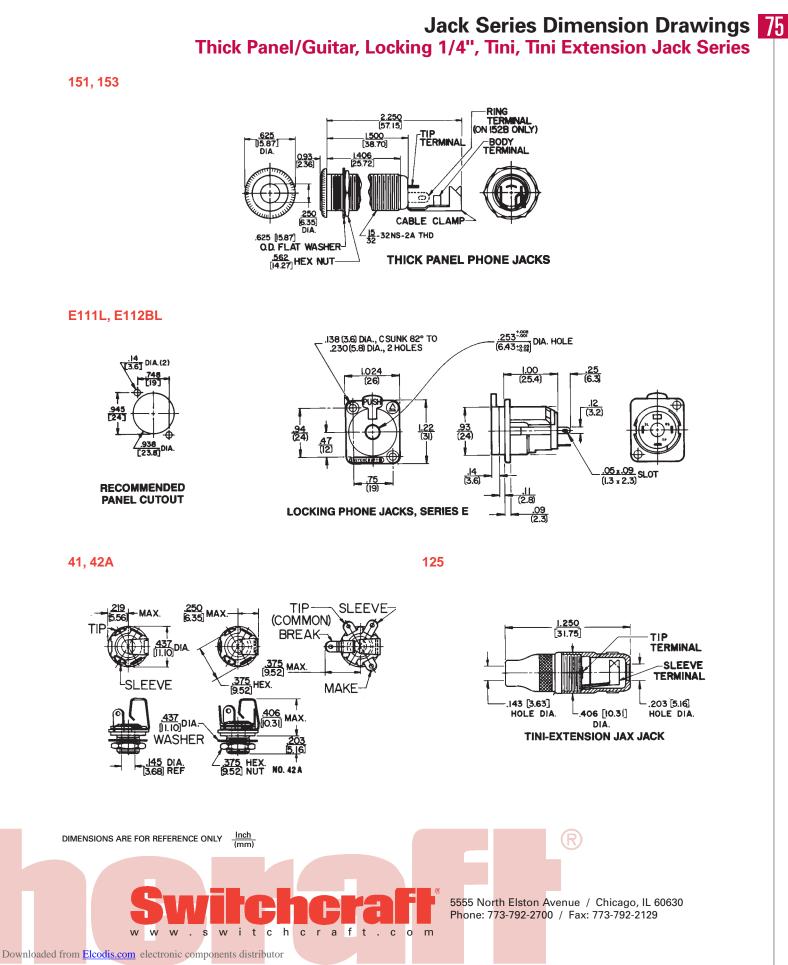
PC Terminals for Hi-D Jax - 113BPC1M, 114BPC1M

w i t c c r

.

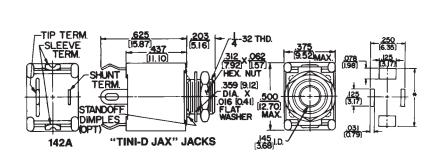
c o m

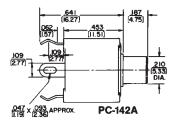

Downloaded from Elcodis.com electronic components distributor


w w w . s

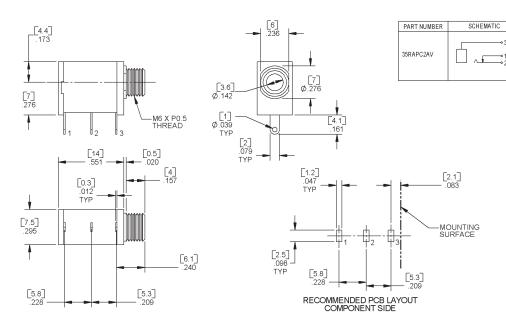
74 Jack Series Dimension Drawings Right Angle PC Mount 1/4" Jack Series

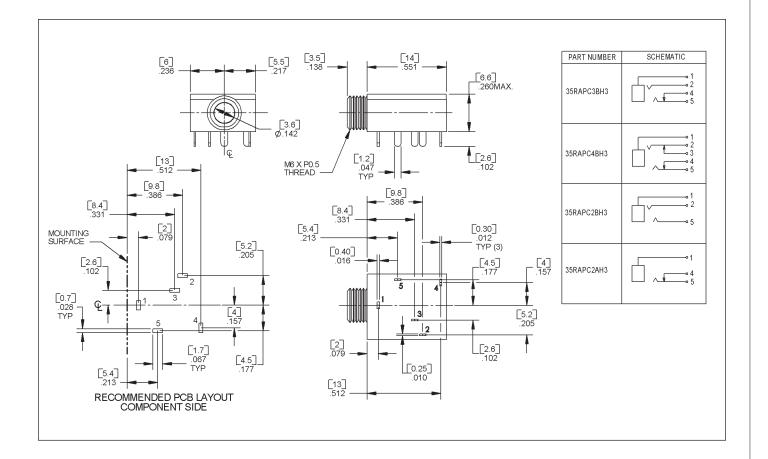
RA49B11


RA49C14B



76 Jack Series Dimension Drawings Micro, 3.5mm Jack Series

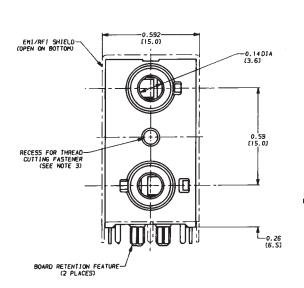

142, PC142A

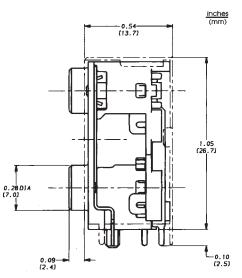

*(10.31) FOR 062 (1.57) THK. BOARD *(22) FOR 078 (1.59) THK. BOARD *(1.10) FOR 236) THK. BOARD RECOMMENDED PC BOARD LAYOUTS

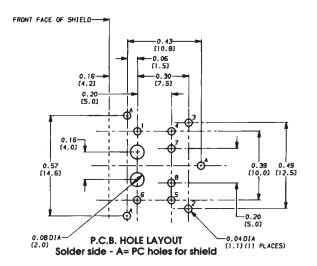
35RAPC2AV

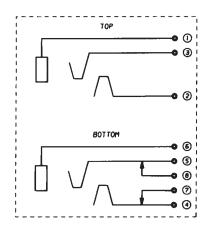
Jack Series Dimension Drawings 77 3.5mm Jack Series

35RAPC2BH3, 35RAPC3BH3, 35RAPC4BH3

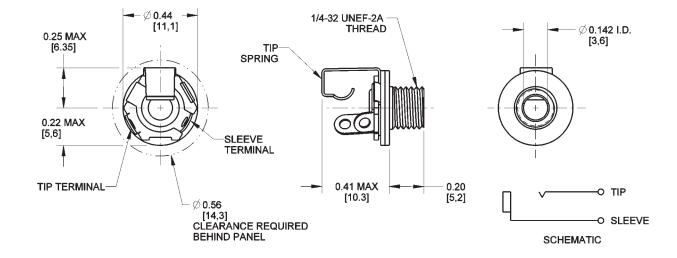

* Please visit the product pages on our website for the most up-to-date product information


JACKS & PLUGS

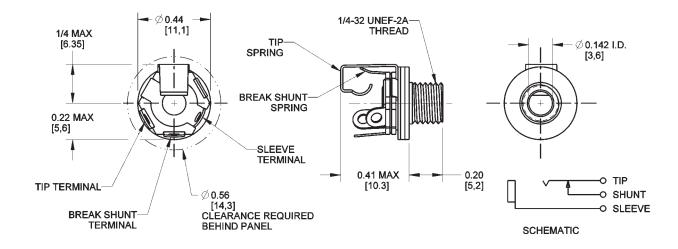



78 Jack Series Dimension Drawings **3.5mm Jack Series**

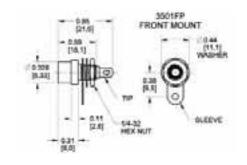
35RAPC7J, 35RAPC7JS

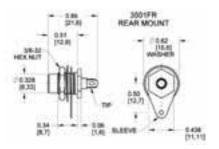


SCHEMATIC

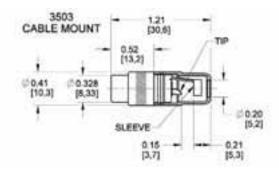

Downloaded from Elcodis.com electronic components distributor

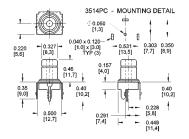
35PM1

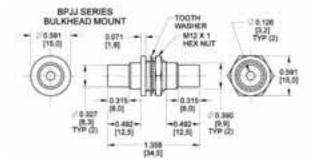

35PM2A

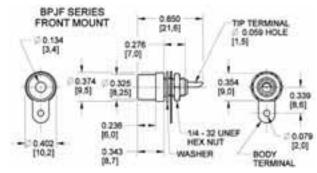


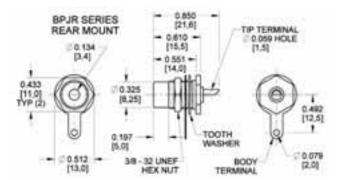
Jack Series Dimension Drawings Phono and Phono Extension Jack Series

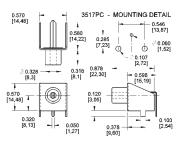

3501FP


3501FR


3503 Extension

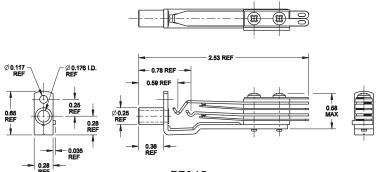

3514PC, 3517PC

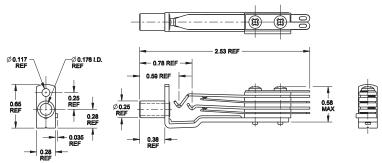

BPJJ Series



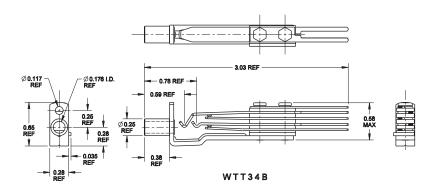
BPJF Series

BPJR Series

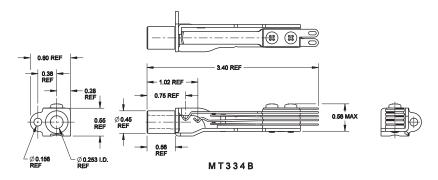



Jack Series Dimension Drawings

TT or Bantam Jack Series

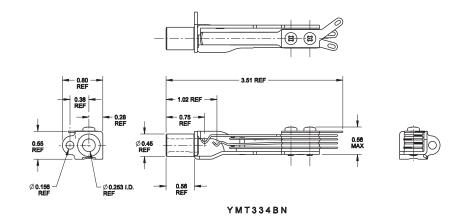

TT34B, TT34BN, WTT34B

Downloaded from Elcodis.com electronic components distributor


* Please visit the product pages on our website for the most up-to-date product information


JACKS & PLUGS

82 Jack Series Dimension Drawings


MT 1/4" Jack Series

MT334B, WMT334B, YMT334BN

W M T 3 3 4 B N

Downloaded from Elcodis.com electronic components distributor

Littel 1/4", Right Angle 1/4", Silent, Super Heavy Duty Plug Series

Switchcraft Littel Plugs all feature one-piece tip rods for added strength and durability. All are offered in a wide variety of configurations, including straight, right angle, shielded, screw or solder terminals. The Heavy Duty Speaker plugs have larger cable clamps and are rated at 15A. The Silent plugs have a unique circuit-closing device which stops hums, pops, and squeals when the plug is removed or inserted from the jack. Miti plugs feature heavy duty brass construction, rugged cable clamps, and spring flex reliefs. All plugs meet EIA standards for tip configuration, which ensures you they mate properly with the jack.

Specifications

Electrical

- Contact Resistance (typical Depends on Mating Jack): < 0.020 ohms Dielectric Withstand Voltage: 500 VAC (minimum) Insulation Resistance @ 500 VDC: 2,000 megohms (minimum) Insulation Resistance (after Mil-Std-202 Salt Spray): 1,000 megohms (minimum) Working Voltage: 250 VAC, 140 VDC Insert/Withdrawal Force: Depends on Mating Jack Soldering Requirement: ANSI/J-Std-001 Temperature Range: -40°C to +85°C U.L. Component Recognition File No: E118169
- Life: Depends on Mating Jack

Materials

Tip: Nickel-plated copper alloy Sleeve: Nickel-plated copper alloy Handle: Nickel-plated copper alloy Tip Terminal: Copper alloy, electrotin-plated Cable Clamp: Copper alloy, electro-tinplated

See Next Page for Ordering Information

DIMENSIONS ARE FOR REFERENCE ONLY

5555 No<mark>rth Elston A</mark>venue / Chicago, IL 60630 Phone: 7<mark>73-792-270</mark>0 / Fax: 773-792-2129

Plug Series 83

w w w

. S

w

it ch

c r

a f t

c o m

.

84 Plug Series

Ordering Information

	Typical				
Part No.	Conductors	Terminals	Mating Jack	Handle	Notes
1/4"" Litte	el Plug Series				
240	2	Screw	11	Black	
245	2	Screw	11	Red	
250	2	Solder	11	Black	
260	2	Screw	11	Black	
270	2	Screw	11	Black	
280	2	Solder	11	Shielded	
281	2	Solder	11	Shielded	Unassembled
580	2	Solder	11	Shielded	Diecast handle
285	2	Solder	11	Shielded	Unassembled
285L	2	Solder	11	Shielded	Larger cable clamp
267	3	Solder	12B	Black	
290	3	Screw	12B	Shielded	
297	3	Solder	12B	Shielded	
299	3	Solder	12B	Shielded	Diecast handle
Heavy Du	ty Speaker Plugs	i			
184	2	Solder	11 or Z15J	Shielded	Accepts Cable OD up to .375"
188	2	Solder	11 or Z15J	Shielded	Accepts Cable OD up to .450"
187	2	Solder	11 or Z15J	Shielded	Accepts Cable OD up to .330"
187B	2	Solder	11 or Z15J	Shielded	Black Handle, accepts Cable OD up
to .330"					
Right Ang	gle 1/4" Plugs				
226	2	Solder	11	Shielded	
228	2	Solder	11	Shielded	Flat handle
236	3	Solder	12B	Shielded	
238	3	Solder	12B		Flat handle
Silent Plu	Ig				
172	2	Screw	11	Shielded	
181	2	Solder	11	Shielded	
Miti Plug	S				
174S	2	Solder	11 or Z15J	Shielded	Brass finish, spring flex relief
					· -

See Pages 88-89 for Mechanical Drawings

Downloaded from <u>Elcodis.com</u> electronic components distributor

Plug Series 85 Tini, Micro, 3.5mm Stereo, Right Angle 3.5mm Stereo, Phono, **Right Angle Phono Plugs Series**

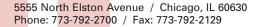
Switchcraft offers a wide variety of Tini, Micro, 3.5mm, and RCA or Phono plugs. Tini plugs are 2 conductor plugs with plug finger diameters of .141" or 3.57mm. Micro plugs are 2 conductor plugs with plug finger diameters of .097" or 2.47mm. Our 35HD Series are true 3.5mm plugs, available in both straight and right angle versions; and available only in 3 conductor. The RCA or Phono plugs come with either hollow pins or solid pins. The 3502 offers hollow pins and standard size handle, the 3502L offers the same pin, but with a larger handle, accommodating cables up to .290". The 3502A and 3502RA Series offer solid pins and the larger cable clamps and handles. The 3558 Series offers a low cost alternative, with hollow pins and plastic handles.

Specifications

Mechanical

Life rating: 5,000 insertion/ withdrawals Insertion/Withdrawal Force: 1 lb (depending on mating jack)

Electrical


Insulation Resistance: > 100 megohms Dielectric Withstanding Voltage: 250 VAC

Environmental

Thermal Range: -55°C to +85°C (non operating); -20°C to 65°C (operating) Thermal Shock: Mil-Std 202, method 107 Humidity: Mil-Std 202, method 106 Salt Spray: Mil-Std 202, method 101 (continued on next page)

c o m

Downloaded from Elcodis.com electronic components distributor

w w

. S

w

it ch

С r a f t

.

86 Plug Series

Materials

Tip, Rod and Body (also integral coupling collar on lock micro-plug): Nickel-plated copper alloy Insulation: Molded thermoplastic Sleeve Termination and Cable Clamp: Tinned copper alloy Handle: Nickel-plated copper alloy, or anodized aluminum, or thermoplastic. See factory for details.

Ordering Information

			Typical		
Part No.	Conductors	Terminals	Mating Jack	Handle	Notes
Tini-Plug (.141	")				
740	2	Screw	41	Black	
750	2	Solder	41	Black	
755	2	Solder	41	Red	
780	2	Solder	41	Shielded	
Micro-Plugs (.0	97")				
850	2	Solder	TR2A	Black	
855	2	Solder	TR2A	Red	
851	2	Solder	TR2A	Black	Locking version
880	2	Solder	TR2A	Shielded	
881	2	Solder	TR2A	Shielded	Locking version
3.5mm Stereo	Plugs				
35HDNN	3	Solder		Shielded	
35HDBAU	3	Solder		Black Shielded	Gold-plated finger
35HDNAU	3	Solder		Shielded	Gold-plated finger
3.5mm Right A	Angle Stereo Plugs	5			
35HDRANN	3	Solder		Shielded	
35HDRABAU	3	Solder		Black Shielded	Gold-plated finger
35HDRAAU	3	Solder		Shielded	Gold-plated finger
Phono Plugs					
3502	2	Solder	3501FP	Shielded	Hollow Pin
3502A	2	Solder	3501FP	Shielded	Large cable clamp, solid pin
3502AAU	2	Solder	3501FP	Shielded	Gold-plated finger
3502ABAU	2	Solder	3501FP	Black shielded	Gold-plated finger
3502L	2	Solder	3501FP	Shielded	Hollow pin, large cable clamp
35581	2	Solder	3501FP	Red	Plastic handle
35582	3	Solder	3501FP	Black	Plastic handle
35585	3	Solder	3501FP	White	Plastic handle
Right Angle Pl	nono Plugs				
3502RA	2	Solder	3501FP	Shielded	
3502RABAU	2	Solder	3501FP	Black Shielded	Gold-plated finger
3502RAAU	2	Solder	3501FP	Shielded	Gold-plated finger

See Pages 90-92 for Mechanical Drawings

Switchcraft leads the industry when developing innovative TT and MT Style plugs. Our "N" version plugs offer nickel-plated plug fingers to reduce tarnishing and corrosion. Our "NC" version plugs not only offer nickel-plated plug fingers, but also large, easy to use solder cups and terminals, plus easy to use cable clamps that really secure your cable to the plugs.

Specifications

Materials

Tip Rod, Body and Screws: Copper alloy, natural finish Terminals (NC Version): Tinned copper alloy Insulation: Thermoplastic, per Mil-P-22985, Type II, Class 1 Handles: Thermoplastic, Type 6, per Mil-M-20693, Type II Shielded (NC Version): Machined from copper alloy, nickel-plated

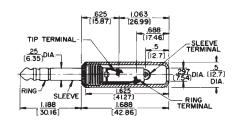
See Page 93 for Mechanical Drawings

TT or Bantam, Mil-Style 1/4" Plugs Series

Ordering Information

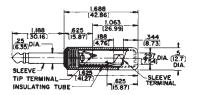
Part No.	Conductors	Terminals	Handle	Notes
TT or Banta	am Plugs			
TT253	3	Screw	Black	
TT253N	3	Screw	Black	Nickel-plated finger
TT253NC	3	Solder	Black	Nickel-plated finger
TT254	3	Screw	Red	
TT254N	3	Screw	Red	Nickel-plated finger
TT254NC	3	Solder	Red	Nickel-plated finger
Mil-Style 1	/4 Plugs			
480	3	Screw	Black	0.206" OD
482	3	Screw	Red	
482N	3	Screw	Red	Nickel-plated finger
482NC	3	Solder	Red Shielded	Nickel-plated finger
482NCP	3	Solder	Red	Nickel-plated finger
483	3	Screw	Black	
483N	3	Screw	Black	Nickel-plated finger
483NC	3	Screw	Black Shielded	Nickel-plated finger
483NCP	3	Solder	Black	Nickel-plated finger
484	3	Screw	Red	0.206" OD
485NC	3	Solder	Shielded	Nickel-plated finger

5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129


Plug Series 87

* Please visit the product pages on our website for the most up-to-date product information

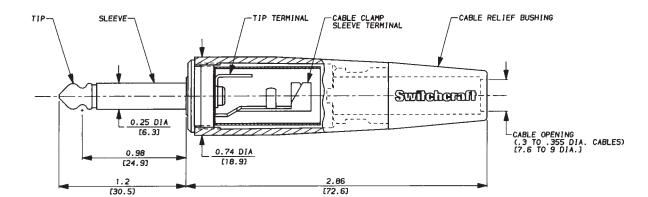
JACKS & PLUGS


88 Plug Series Dimension Drawings Littel Plug 1/4" Series

260

No. 260 typical — shown with screw-type terminals and plastic handle.

280 Typical



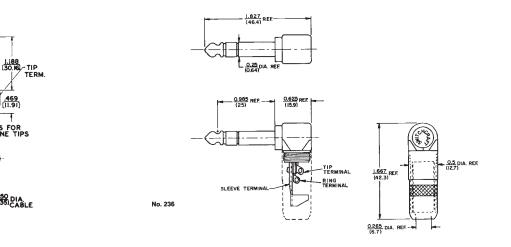
No. 280 typical — shown with solder lug terminals, cord clamp and shielded handle.

187BL

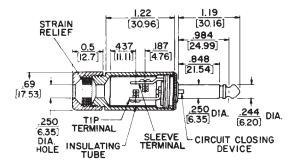
No. 187BL (Typical)

Plug Series Dimension Drawings 89 Littel Right Angle 1/4", Silent, Super Heavy Duty Plug Series

228 Right Angle 1/4" Plugs


.<u>.250</u>DI

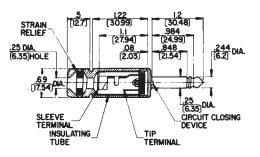
SLEEVE


<u>.500</u>

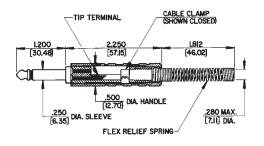
.<u>750</u> (19.05)

236 Right Angle 1/4" Plugs

.469 [[].9]]


LIPS FOR

TO 250 DIA


6

L000

181 Silent Plug

174S Super Heavy Duty Plug

W i t c h С r

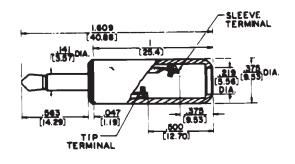
a f t

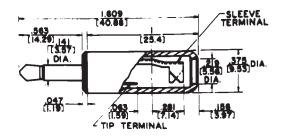
.

c o m

Inch (mm) DIMENSIONS ARE FOR REFERENCE ONLY

> 5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129

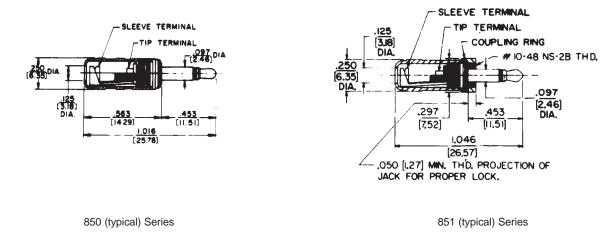

W . S * Please visit the product pages on our website for the most up-to-date product information


JACKS & PLUGS

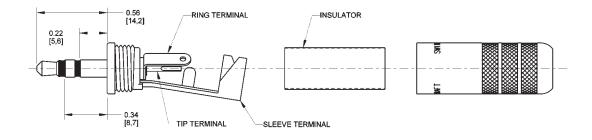
90 Plug Series Drawings

Tini, Micro Plug Series

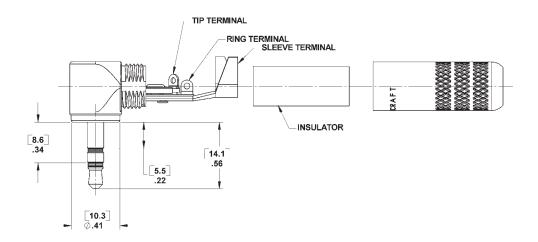
740, 750 Tini-Plugs



740 Screw Terminals Series

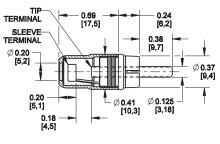

750 Clamp-Lug Terminals

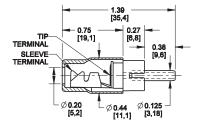
850, 851 Micro Plugs



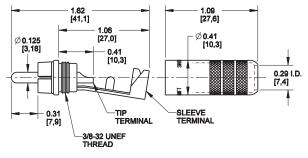
Plug Series Drawings 9 35HD 3.5mm Stereo Plug Series

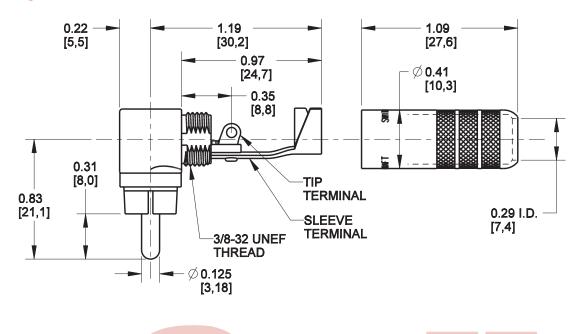
35HDNN, 35HDBAU, 35HDNAU

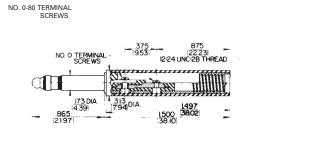

35HDRANN, 35HDRABAU, 35HDRAAU



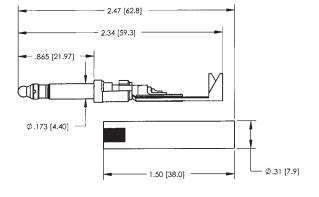
92 Plug Series Drawings Phono and Phone Right Angle Plug Series


3502, 3502A, 35581 Phono Plug


3502 Series

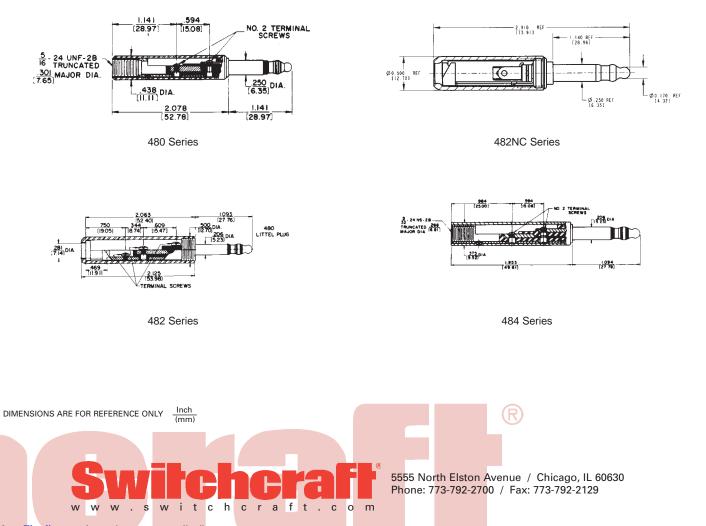


3502RA Plug



Plug Series Drawings 93 TT or Bantam, Mil-Style 1/4" Plug Series

TT253, TT253NC Plug



TT253 Series

480, 482, 482NC, 484 Mil-Style 1/4" Plug

SWITCHES

Switch Series Guitar and Knobs, and Broadcast Switch Series

The 12000 Series switches are premium grade switches used primarily in guitars as pick-up switches. The largest names in the industry rely on our switches for quality and durability. Our 84000 Series and PL Series switches are used in broadcast studios, theater lighting, anywhere large illuminated switches are needed.

Specifications - 12000 Series

Electrical

94

Contact Ratings: Fine silver contacts rated at 3A, 300W maximum AC non-inductive load standard. Other contacts available Leakage Resistance: 1,000 MW or greater Dielectric Strength: 250 VDC

Materials

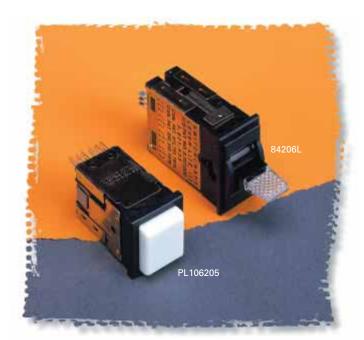
- Frame: Copper alloy, plated (3,000, 13,000); Steel, plated (12,000)
- Bushing and Shaft: Copper alloy, plated

Springs: Copper alloy

- Knob: Black molded thermoplastic Mounting Hardware: Knurled copper alloy locknut T10711, supplied. P10531 hex locknut, special order
- Insulation: Rigid plastic spacers with plastic tubing through stack. Rigid plastic and/or thermoplastic lifters. Thermoplastic cam on actuator end

Specifications - 8400 Series

Electrical


Temperature Range: -22°F to 158°F (-30°C to +70°C) Dielectric Strength: 1 kV DC Leakage Resistance: 1,000 MW or greater

Materials

Mounting/Retaining Clips and Covers: Steel, plated Contact Ratings: Gold crossbar rated at 1A, 200W Maximum AC non-inductive loads (continued on next page)

Note: Knobs must be ordered separately.

Switch Series 95

(continued from previous page)

Springs: Copper alloy, plated Lamp Terminals: Copper alloy, plated Lamp Socket: Zinc, plated Terminals: Copper alloy, plated, straight solder lugs Housing, Escutcheon, Knob, Actuator and Switching Stacks Insulation: Molded plastic

Specifications - PL Series

PUSH-LITE Switches Series and PL Indicators

Contacts

Welded crossbar Gold Alloy, rated at 2 amps., 200 watts max., AC non-inductive load.

Electrical

6,000 Minimum Life (Gold Alloy Contacts) per UL 1054.

Materials

Push-Lite Switch Assemblies:

Housing, Lifters, Switch Modules, Barriers and Pushbuttons: **Molded Plastics**

Contacts Springs: Phosphor Bronze, Silver Plated

Lamp Terminals: Brass, Silver plated Lamp Socket, Light Divider and Yoke Assembly: Nickel Silver Mounting Bracket and Retaining Clips: Steel with iridescent

iridite over Cadmium Plating Series PL Pushbuttons:

Housing, Color Filter Inserts and **Display Screens: High impact** thermoplastic

PL Indicators:

Housing: Molded glass filled Plastics

Mounting Bracket: Steel, iridescent over cadmium Plating.

Lamp Retainer and Terminals: Nickel Silver.

Display Screen (Pushbutton): Molded Plastics.

Ordering	Information	
Part Nur	nber Circuitry	Description
Guitar Sv	vitches	
12010	SPST(NC)/SPST(NC)	Straight, nickel finish, riveted silver contacts
12011	SPST(NC)/SPST(NC)	Straight, bright brass finish, riveted silver contacts
12012	SPDT(non-shorting)/SPST(NC)	Right angle, nickel finish, welded silver contacts
12013	SPST(NC)/SPST(NC)	Right angle, nickel finish, welded silver contacts
12014	SPST(NC)/SPST(NC)	Right angle, black finish, welded silver contacts
12015	DPDT(NC)/DPDT(NC)	Right angle, nickel finish, welded silver contacts
12016	SPST(NC)/SPST(NC)	Right angle, bright brass finish, riveted silver contacts
12017	SPST(NC/SPST(NC)	Right angle, nickel finish, welded gold contacts
Knobs		
T12742		Black
T12745		White
T127410		lvory
P2912		Amber
Broadcas	t Switches	
84206L	DPDT	2 Position, locking
84306L	SPDT(non-shorting) both sides	3 Position, locking
84312L	DPDT both sides	3 Position, locking
84324L	DPDT both sides	3 Position, locking
K131		Filter kit, 3 of ea. (amb, blu, grn, red, wht, and yel)
PL106205	DPDT	Momentary, single lamp
PL206205	DPDT	Momentary, twin lamp
PL106705	DPDT	Push-lock/Push-release, single lamp
PL206705	DPDT	Push-lock/Push-release, twin lamp

See Next Page for Mechanical Drawings

5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129

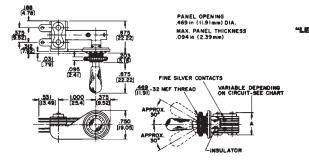
w w . s w

it ch

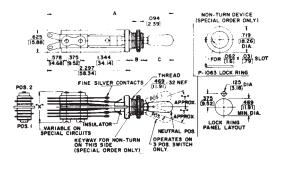
c r

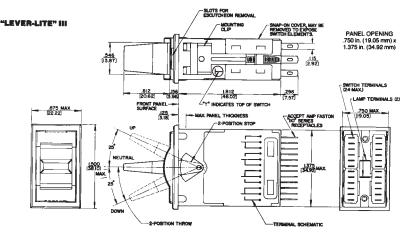
aft.

С o m

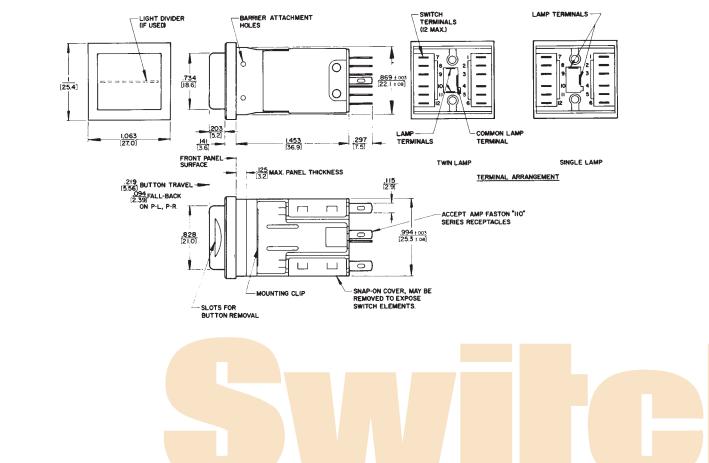

SWITCHES

Switch Series Drawings


Guitar and Knobs, and Broadcast Switch Series


12000 Series RA Lev-R[®] Switches

84000 Series Lever-Lite® Switches



12000 Series Straight Lev-R® Switches

PL Series Push-Lite® Switches

NOTES

INDEX

<u>98</u>

05AD0545	
05AK0545	
05AK2545	
05AN0545	
05AN1545	
05AN2545	
05AN8045	
05AU0545	
05AU8045	
05BL5M53	
05DL5M	3
05GM5M53	3
10BF1045	5
10BK1045	5
10BN1045	
1166	
11166	
112B66	
113BPC1M66	
114B66	
11/BPC 66	\$
114BPC66 114BPC1M66	2
114BPCS	2
12066 1201095	
12011	
12012	
12013	
12014	
12015	-
12016	
1201795	
12166	
123866	
12568	
12866	
12A66	
12B66	3
13166	3
13366	3
142A68	3
14B66	5
15168	3
15268	
152B68	
153	3
15468	
15568	
15AK1545	
10/ 111040	^

170	04
172	
174S	.84
181	.84
184	.84
187	.84
187B	
188	
18QD18	.04
100D10	.40
18QF18	.45
18QH18	
20QD20N	.45
20QF20N	.45
20QH20N	.45
226	
228	.04 Q/
236	.04
	.84
238	
240	
245	.84
250	
2501F	
2501M	
2501MP	
25AF25	
25AK25	
25AK82	
25AN25	.45
260	.84
267	
270	
280	
200	.04
281	.84
285	.84
285L	
290	.84
297	.84
299	
30AK30	
	.40
30AN30	
30AR30	.45
321	
322	
323	.63
324	.63
330F1	64
330F2	6/
220D	.04
330P	
332A	.64
336A	.64

340	64
345A	.64
349A	
349A	.04
3501FP	70
	.70
3501FR	.70
3502	98
300z	.00
3502A	.86
3502AAU	.80
3502ABAU	86
0002/ (D/ (O	.00
3502L	.86
3502RA	98
3302NA	.00
3502RAAU	.86
3502RABAU	06
3502NADAU	.80
3503 3514PC 3517PC	70
	-70
3514PC	.70
2517PC	70
	.70
352A	.64
35581	06
35582	.86
35585	
30000	.00
35HDBAU	.86
35HDNAU	06
30NDNAU	.00
35HDNN	.86
35HDRAAU	06
35HDRABAU	.86
35HDRANN	90
3011DNAINN	.00
35PM1	.68
35PM2A	60
39PIVIZA	.08
35RAPC2AV	.68
35RAPC2BH3	00
35RAPCZBH3	.68
35RAPC3BH3	68
	.00
35RAPC4BH3 35RAPC7J 35RAPC7JS	.68
35RAPC71	68
	.00
35RAPC/JS	.68
361A	64
0017 (.01
362A	.64
363	64
365	.64
370A	64
07074	.04
374	.64
376	64
377	.64
383A	63
	.00
384A	.63
3867	63
386A 387A	.00
387A	.63
389	63
200	60
390	
41	.68

42A	60
44	
480	.87
482	87
482N	
482NC	.87
482NCP	.87
483	87
483N	
483NC	.87
483NCP	.87
484	
485NC	.07
485INC	.87
516-090-000-301	
516-090-000-302	.20
516-120-000-101	
510-120-000-101	.20
516-120-000-102	
516-290-500	.20
516-290-590	
57GB5F	
57PC5F	
57PC5FS	.53
580	
712A	./!
722A	
732A	.71
740	86
750	
755	.86
760	.71
760K	
765	
780	
80	.66
830	
84206L	
84306L	
84312L	.95
84324L	
850	
851	.86
855	.86
860	71
000	./ 1
865	
88	.66
880	
881	200. AQ
	.00
A*F	.46
A*FB	.46

Downloaded from <u>Elcodis.com</u> electronic components distributor

INDEX

A*FBAU	46
A*FL	
A*M	
A*MB	.46
A*MBAU	
A*ML	
AA*F	
AA*FB	.46
AA*FBAU	46
AA*FL	16
AA*M	
AA*MB	.46
AA*MBAU	
AA*ML	
AAA*FBAUZ	
AAA*FBZ	.46
AAA*FPBAUZ	46
AAA*FPBZ	
AAA*FPZ	
AAA*FZ	.46
AAA*MBAUZ	46
AAA*MBZ	.40
	.40
AAA*MPBAUZ	.46
AAA*MPBAUZ	.46
AAA*MPBAUZ AAA*MPBZ	.46 .46
AAA*MPBAUZ AAA*MPBZ AAA*MPZ	.46 .46 .46
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ	.46 .46 .46 .46
AAA*MPBAUZ AAA*MPBZ AAA*MPZ	.46 .46 .46 .46
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ B*F	.46 .46 .46 .46 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ B*F B*FB	.46 .46 .46 .46 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ B*F B*FB B*M	.46 .46 .46 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ B*F B*FB. B*FB. B*MB	.46 .46 .46 .47 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ B*F B*FB B*M B*MB BPJF**	.46 .46 .46 .47 .47 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ B*F B*FB B*M B*MB BPJF**	.46 .46 .46 .47 .47 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ B*F B*FB B*M B*MB. BPJF** BPJF**AU	.46 .46 .46 .47 .47 .47 .47 .47 .70 .70
AAA*MPBAUZ AAA*MPBZ AAA*MPZ B*F B*FB B*MB B*MB BPJF** BPJF**AU BPLII**	.46 .46 .46 .47 .47 .47 .47 .47 .70 .70
AAA*MPBAUZ AAA*MPBZ AAA*MPZ B*F B*FB B*MB B*MB BPJF** BPJF**AU BPJJ** BPJJ**AU	.46 .46 .46 .47 .47 .47 .47 .70 .70 .70 .70
AAA*MPBAUZ AAA*MPBZ AAA*MPZ B*F B*FB B*MB B*MB BPJF** BPJF**AU BPJJ**AU BPJJ**AU BPJJ**AU	.46 .46 .46 .47 .47 .47 .47 .47 .70 .70 .70 .70
AAA*MPBAUZ AAA*MPBZ AAA*MPZ B*F B*FB B*MB B*MB BPJF** BPJF**AU BPJJ**AU BPJJ**AU BPJJ**AU	.46 .46 .46 .47 .47 .47 .47 .47 .70 .70 .70 .70
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ B*F B*FB B*MB B*MB BPJF** BPJF**AU BPJJ** BPJJ**AU BPJJ**AU BPJR** BPJR**	.46 .46 .46 .47 .47 .47 .47 .47 .70 .70 .70 .70 .70 .70
AAA*MPBAUZ AAA*MPBZ AAA*MZ AAA*MZ B*F B*FB B*MB BPJF** BPJF** BPJJ**AU BPJJ**AU BPJJ**AU BPJR**. BPJR** BPJR**AU C*F	.46 .46 .46 .47 .47 .47 .47 .70 .70 .70 .70 .70 .70 .47
AAA*MPBAUZ AAA*MPBZ AAA*MZ AAA*MZ B*F B*FB B*MB BPJF** BPJF** BPJJ**AU BPJJ**AU BPJJ**AU BPJJ**AU BPJR**. BPJR**. BPJR**AU C*F C*FB	.46 .46 .46 .47 .47 .47 .70 .70 .70 .70 .70 .70 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MZ AAA*MZ B*F B*FB B*MB B*JF** BPJF** BPJJ**AU BPJJ**AU BPJJ**AU BPJR** BPJR** BPJR** C*FB C*M	.46 .46 .46 .47 .47 .47 .47 .70 .70 .70 .70 .70 .70 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MZ AAA*MZ B*F B*FB B*MB B*JF** BPJF** BPJJ**AU BPJJ**AU BPJJ**AU BPJR** BPJR** BPJR** C*FB C*M	.46 .46 .46 .47 .47 .47 .47 .70 .70 .70 .70 .70 .70 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ B*F. B*FB. B*MB. B*MB. BPJF**. BPJF**. BPJJ**AU. BPJJ**AU. BPJJ**AU. BPJR**. BPJR*. BPJR	.46 .46 .46 .47 .47 .47 .47 .70 .70 .70 .70 .70 .47 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ B*F. B*FB. B*MB. BPJF**. BPJF**AU. BPJJ**AU. BPJJ**AU. BPJR**AU. C*F. C*FB. C*M. C*MB. D*F.	.46 .46 .46 .47 .47 .47 .47 .47 .70 .70 .70 .70 .70 .70 .47 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MZ B*F B*FB B*MB BPJF** BPJJ**AU BPJJ**AU BPJR** BPJR**AU C*F C*FB C*MB D*FB	.46 .46 .47 .47 .47 .47 .47 .70 .70 .70 .70 .70 .70 .70 .47 .47 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ B*F B*FB B*FB B*MB BPJF** BPJF**AU BPJJ**AU BPJJ**AU BPJR** BPJR**AU C*F C*FB C*M C*MB D*F D*FB D*FB D*FBAU	.46 .46 .46 .47 .47 .47 .47 .70 .70 .70 .70 .70 .70 .47 .47 .47 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ B*F B*FB B*FB B*MB BPJF** BPJF**AU BPJJ**AU BPJJ**AU BPJR** BPJR**AU C*F C*FB C*M C*MB D*F D*FB D*FB D*FBAU	.46 .46 .46 .47 .47 .47 .47 .70 .70 .70 .70 .70 .70 .47 .47 .47 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ B*F	.46 .46 .46 .47 .47 .47 .47 .70 .70 .70 .70 .70 .70 .70 .70 .70 .47 .47 .47 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ B*F	.46 .46 .47 .47 .47 .47 .47 .70 .70 .70 .70 .70 .70 .70 .70 .70 .47 .47 .47 .47 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ B*F	.46 .46 .47 .47 .47 .47 .70 .70 .70 .70 .70 .70 .70 .70 .70 .7
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ B*F	.46 .46 .46 .47 .47 .47 .47 .70 .70 .70 .70 .70 .70 .70 .70 .70 .47 .47 .47 .47 .47 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ B*F	.46 .46 .46 .47 .47 .47 .70 .70 .70 .70 .70 .70 .70 .70 .70 .47 .47 .47 .47 .47 .47 .47 .47 .47
AAA*MPBAUZ AAA*MPBZ AAA*MPZ AAA*MZ B*F	.46 .46 .46 .47 .47 .47 .70 .70 .70 .70 .70 .70 .70 .70 .70 .47 .47 .47 .47 .47 .47 .47 .47 .47

E112BL	68
E3FSC	47
E3FSCB	17
E3FSCBAU	47
E3MSC	
E3MSCB	47
E3MSCBAU	
EH13942	
EHBNC2	52
EHBNCSC	52
EHCAT62	
EHRCA2	
EHRCABNC	52
	.52
EHUSB2	52
HP75BNC1	64
HP75BNC12	54
HP75BNC2	
HP75BNC7	54
HP75BNC9	54
HPCC4F	51
HPCC4RAF	Б1
HPCI4F	51
HPCP410PC	50
HPCP410RA	50
HPCP41F	50
HPCP41F1	50
HPCP420PC	50
HPCP420RA	50
HPCP42F	50
HPCP42F1	
HPCPK112F	30
HPCPK112F1	
HPCPK1B	30
	.00
HPCPK324F	
HPCPK324F1	30
HPCPK3B HPCPR410PC	.30
HPCPR410PC	50
HPCPR41F	50
HPCPR41F1	50
HPCPR420PC	.50
HPCPR42F	50
HPCPR42F1	
J3FS	48
K131	
K3FS	48
K459	
N409	/1
K460	
K460	4
MBPK175T	4 43
K460 MBPK175T MD10	4 43

MD15	45
MD6	
MT334B	.70
MT48FN	
MT48HN	
MT48K1FN	
MT48K1HN	24
MT48K1NN	24
MT48K1NS	
MT48K3FN	
MT48K3HN	
MT48K3NN	.24
MT48NN	
MT48NS	
MT52FN	
MT52HN	
MT52K1FN	.24
MT52K1HN	
MT52K1NN	
MT52K1NS	
MT52K3FN	
MT52K3HN	
MT52K3NN	
MT52NN	
MT52NS	
MTP24K7	
MTP48K1NO	
MTP48K1NS	.14
MTP48K3BPNS	.18
MTP48K3NO	
MTP48K3NS	14
MTP48K3PBNO	
MTP48K3SNO	
MTP52K3BPNO	
	.10
MTPFA48K1NO	8
MTPFA48K1NS	
MTPH48K1NO	5
MTPH48K1NS	5
MTPH48K3NO	5
MTPH48K3NS	5
MTPH48K3SNO	
MVEZNPK175T	
MVJ*75T	20
MVJ*NT	20
	.39
MVP32K1*75T	.37
MVP32K1*NT	.37
MVP32K2*75T	.37
MVP32K2*NT	.37

MVP32K3*75T	27
MVP32K3*NT	.57
P*F	
P*FB	.48
P*M	48
P*MB	.40
	.48
P2912	.95
PC142A	.68
PD3FSC1	.48
PD3FSC1AU	
PD3MSC1	
PD3MSC1AU	
PL106205	
PL106705	.95
PL206205	
PL206705	
PT1LA	
РТ2В	4
QGPK116FB	.32
QGPK116MB	32
QGPK18M8FB	
QGPK1B	.32
QGPK332MFB	
QGPK3B	.32
R*FBAUZ	
R*FBZ	
R*FZ	
R*MBAUZ	
R*MBZ	
R*MZ	.48
RA49B11	.66
RA49C14B	.66
RN112APC	66
RS422H48N081	
RS422H4N161	.12
RS422H4N162	.12
RS422H4N242	.12
RS422V4N081	12
RS422V4N161	
RS422V4N162	
RS422V4N242	.12
RS422V4N322	.12
S3F5M	.63
S3FM	63
S5F3M	62
SUSIVI	.03
S760	./1
S760K	.71
S765	.71
S765 T127410	.95

5555 North Elston Avenue / Chicago, IL 60630 Phone: 773-792-2700 / Fax: 773-792-2129

INDEX

T40740	~ ~ ~
T12742	95
T12745	95
T3F	
TA*F	49
TA*FB	
TA*FL	
TA*M	49
TA*MB	
TA*ML	49
TA01	63
TA02	
TA04	63
TA05	
TB*M	
TB*MB	49
Π1	
₩10	45
TT122	45
TT124	
TT126	45
Π127	
TT128	
ΤΤ2	45
Π253	
TT253N	
TT253NC	87
ΤΤ254	
TT254N	87
TT254NC	
Π3	
TT34B	70
TT34BN	81
TT34BNY	
ΤΤ4	45
ΤΤ5	45
Π6	
ΤΤ7	45
Π8	
ΤΤ9	45
TT96EDACNO	20
TT96FDACNS	
	20
TTD1	
TTD10	45
TTD2	
TTD3	
TTD4	45
TTD5	
TTD6	
TTD7	45

TTD8	15
TTD9 TTEZN****0	45
TTEZN****0	10
TTP96ASFN	28
TTP96ASHN	
TTP96ASNN	
TTP96K1FN	22
TTP96K1HN	22
TTP96K1NN	22
TTP96K3BPNS	18
TTP96K3FN	
TTP96K3HN	
TTP96K3NN	22
TTP96K5BPNS	
TTPFA96K1NO	o
	0
TTPFA96K1NS	8
TTPH96K1NO	
TTPH96K1NS	5
TTPH96K3NO	5
TTPH96K3NS	0
	0
TTPW96K1HN	16
TTPW96K1NN	
TTPW96K1NS	16
TTPW96K3HN	
TTPW96K3NN	16
	10
TTPW96K3NS	16
TY*F VAPK1HD*75T	49
VAPK1HD*75T	40
VAPK1HD*NT	10
VAPK1SD*75T	40
VAPKISD" /51	40
VAPK1SD*NT	40
VAPK3HD*75T	40
VAPK3HD*NT	40
VAPK3SD*75T	10
VAPK3SD*NT	40
VAPR35D"N1	40
VJHD*75TX	36
VJHD*NTX	36
VJSD*75TX	36
VJSD*NTX	26
VMAFN	
VMPP	
VMVHD*75T	40
VMVHD*NT	40
VMVSD*75T	10
	40
VMVSD*NT VPP24K1HD*75T	40
VPP24K1HD*75T	34
VPP24K1HD*NT	34
VPP24K1SD*75T	
VPP24K1SD*NT	21
VII 24KIJU INI	

VPP24K3HD*75T	34
VPP24K3HD*NT	34
VPP24K3SD*75T	34
VPP24K3SD*NT	34
VPP26K1HD*75T	34
VPP26K1HD*NT	34
VPP26K1SD*75T	34
VPP26K1SD*NT	34
VPP26K3HD*75T	34
VPP26K3HD*NT	34
VPP26K3SD*75T	34
VPP26K3SD*NT	34
VSPP	44
WMT334B	70
WTT34B	70
YMT334BN	70
Z15J	66