

SiBar thyristor surge protection devices help protect sensitive telecommunication equipment from the hazards caused by lightning, power contact, and power induction. These devices have a high electrical surge capability to help protect against transient faults and a high off-state impedance, rendering them virtually transparent during normal system operation.

SiBar thyristor surge protectors assist designers to meet telecommunication and computer telephony equipment requirements and industry specifications.

- Helps provide protection for sensitive telecom electronic equipment
- · Low leakage current
- · Low power dissipation
- · Fast, reliable operation
- · No wear-out mechanisms
- Assists designers to meet worldwide telecom standards
- · Helps reduce warranty and service costs
- · Easy installation
- · Helps improve power efficiency of equipment

Features:

- · RoHS compliant
- · Bidirectional crowbar transient voltage protection
- Voltage range: 170V 275V with improved Vdrm/Vbo range
- · High off-state impedance
- · Low on-state voltage
- · High surge capability
- · Short-circuit failure mode
- · Surface-mount technology
- · DO-214AC SMA package
- 10 x 1000 μs 50A surge rating
- Helps equipment comply with TIA-968, Telcordia GR-1089, IEC61000-4-5, ITU K.20/21/45

Applications:

Modems

- · Set top boxes
- · Fax machines
- · POS systems
- Phones, answering machines
- Analog and digital linecards (xDSL, T1/E1...)

· PBX systems

• Other customer premise and central office network equipment requiring protection

Document: SCD 27217 Status: Released

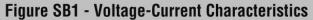
Table SB1 - Electrical Characteristics									
Part Number	V _{DM} Max. (V)	V _{BO} Max. (V)	I _H Min. (mA)	V _⊤ Max. (V)	C1 (Typ) 50V _{DC} Bias	C2 (Typ) 2V _{DC} Bias	Off-State Current VD2=VDM (μΑ)		
TVA170NSA-L	170	220	150	4	20	39	5		
TVA220NSA-L	220	300	150	4	17	33	5		
TVA275NSA-L	275	350	150	4	16	31	5		

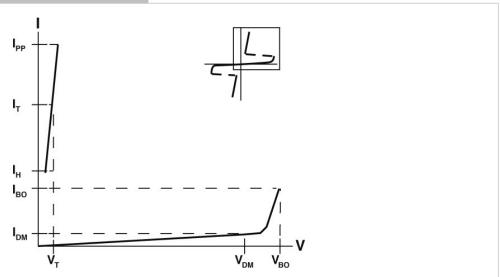
Notes: All electrical characteristics are measured at 25°C.

 V_{DM} measured per UL497B pulse requirements: at max. off-state leakage current (IDM) = 5 μ A. V_{BO} measured at 100V/ μ s.

C1 measured at 1 MHz with a 50 V_{DC} bias.

C2 measured at 1MHz with a 2V_{DC} bias.

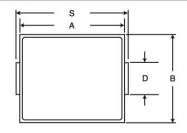

Table SB2	2 – Surge	Current R	ating							
	TIA-968			Telcordia GF	R-1089*	IEC61000-4-5	ITU K.20/21/45*			
	Type A	Type B						_		
Part Number	I _{pp} (A) 5 x 320 μs	I _{pp} (Α) 10 x 560 μs	_{pp} (A) 10 x 160 μs	I _{pp} (A) 10 x 1000 μs	I _{pp} (A) 2 x 10 μs	Ι _{pp} (A) 8 x 20 μs	I _{PP} (A) 5 x 310 μs (VOC: 10 x 700μs)	I _{TSM} Min. (A)		dV/dt (V/μs)
TVAxxxNSA-L	. 90	70	100	50	150	150	90	22	500	2000

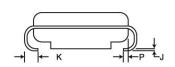

Notes: *Lightning current wave forms for applicable industry specification.

IrsM, peak on-state surge current is measured at 60 Hz, one cycle.

di/dt: critical rate-of-rise of on-state current (pulsed power amplifier Vmax = 600V; C = 30μF).

dV/dt: critical rate-of-rise of off-stage voltage (linear wave form, V_D = rated V_{BO}, Ti = 25°C




The voltage current (V-I) is useful in depicting the electrical characteristics of the SiBar thyristor surge protectors in relation to each other.

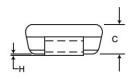

Document: SCD 27217 Status: Released

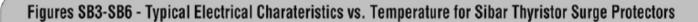
Figure SB2 - Dimension Figure

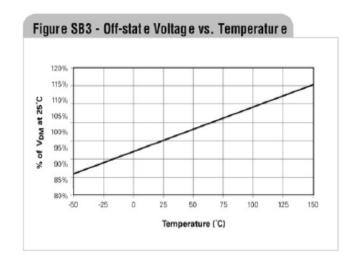
Table SB3 - Dimensions in Millimeters

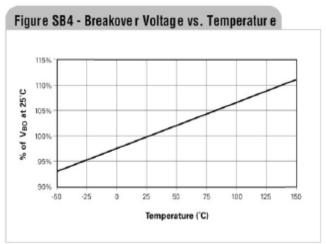
	Α		В		С		D	
Dimension	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
TVAxxxNSA-L	4.06	4.57	2.25	2.92	1.90	2.41	1.25	1.65
I VAXXXINSA-L	(0.160)	(0.180)	(0.089)	(0.115)	(0.075)	(0.095)	(0.049)	(0.065)

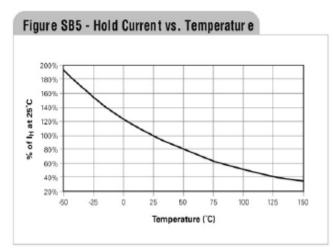
	Н		J		К		Р	S	
Dimension	Min.	Max.	Min.	Max.	Min.	Max.	Ref	Min	Max.
TVAxxxNSA-L	0.051	0.200	0.150	0.41	0.76	1.52	0.051	4.80	5.59
I VAXXXINSA-L	(0.002)	(0.008)	(0.006)	(0.016)	(0.030)	(0.060)	(0.0020)	(0.189)	(0.220)

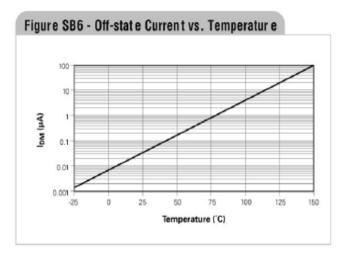
Notes: *D dimension is measured within dimension P.
TVA series devices use industry standard SMA package type.
All devices are bidirectional and may be oriented in either direction for installation

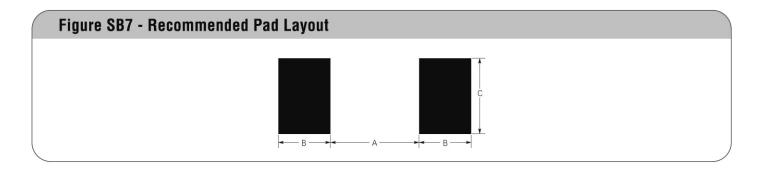

Table SB4 – Physical Characteristics and Er	vironmental Specifications
Lead material	Matte tin finish (-L devices)
Encapsulating material	Epoxy, meets UL94V-0 requirements
Solderability	per MIL-STD-750, Method 2026
Solder heat withstand	per MIL-STD-750, Method 2031
Solvent resistance	per MIL-STD-750, Method 1022
Mechanical shock	per MIL-STD-750, Method 2016
Vibration	per MIL-STD-750, Method 2056
Storage temperature (°C)	-55 to 150
Operating temperature (°C)	-40 to 125
Junction temperature (°C)	175
Maximum Lead Temperature for Soldering Purpose; for 10s (°C)	260


Test	Conditions	Duration
High temperature, reverse bias	+100°C, 50VDC bias	1000 hours
High humidity, high temperature, reverse bias	85% RH, +85°C, 50VDC bias	1000 hours
High temperature storage life	+150°C	1000 hours
Temperature cycling	-65°C to +150°C, 15 minute dwell	1000 cycles
Autoclave	100% RH, +121°C, 15 PSI	96 hours


Document: SCD 27217


Status: Released





Document: SCD 27217 Status: Released

			Part Marking	Recommended Pad Layout (millimeters/inchs)					
Part Description	Tape and Reel Quantity	Standard Package		Dimension A (Nom.)	Dimension B (Nom.)	Dimension C (Nom.)	Agency Recognition*		
TVA170NSA-L	5,000	20,000	17NA	2.0 (0.079)	2.0 (0.079)	2.0 (0.079)	**		
TVA220NSA-L	5,000	20,000	22NA	2.0 (0.079)	2.0 (0.079)	2.0 (0.079)	**		
TVA275NSA-L	5,000	20,000	27NA	2.0 (0.079)	2.0 (0.079)	2.0 (0.079)	**		

5

308 Constitution Drive, MS R21/2A Menlo Park, CA USA 94025-1164

Tel (800) 227-7040 (650) 361-6900 Fax (650) 361-2508 www.circuitproection.com www.circuitprotection.com.hk (Chinese) www.circuitprotection.jp (Japanese)

Raychem, PolySwitch, SiBar, TE Logo and Tyco Electronics are trademarks. All other trademarks and copyrights are property of their respective owners.

SiBar Thyristor Surge Protectors

© 2007 Tyco Electronics Corporation. All rights Reserved.

Document: SCD 27217 Status: Released