Switching Gas Discharge Tubes

Gas Plasma Voltage Dependent Switches

RotS LT Series

The LT Series is a 2-terminal bi-directional, voltage triggered switch is designed for ignition circuits used in high pressure HID lighting. Switching voltages for the devices are fixed depending on the part number selected. The gas plasma trigger technology offers very fast switching speeds, resulting in significantly better di/dt values when compared to silicon based SIDAC devices. Due to the high switching voltage of the devices, step-up transformer sizes and specifications can be reduced saving cost, size and weight.

Features

- RoWS compliant
- Ceramic chamber for ultimate reliability.
- Very high switching speed once switching voltage has been reached, resulting in high di/dt to be generated enabling the best performance to be extracted from ignition transformers.
- Tape and reel to EIA 481-1

Applications

- For switching stored electrical energy (such as capacitive discharge) at predetermined voltages.
- Designed for ignition circuits used in high pressure HID lighting.

Mechanical Specifications:
Weight (ballast circuit only): $\quad 1.42 \mathrm{~g}$ (0.049 oz .)
Electrode Base: Copper alloy

LT xxx SM

Dimensions in mm

Electrode Plating material: Bright Sn Body: Ceramic
Littelfuse 'LF' marking, voltage and product code (red print)
Device Marking:
\qquad

A= Axial lead, tape and Reel
SM= Surface Mount

Materials:

ORDERING INFORMATION

Switching Gas Discharge Tubes

Gas Plasma Voltage Dependent Switches

RoHS LT Series

Device Ratings and Specifications

Part Number	$\begin{gathered} \mathrm{v}_{\mathrm{BO}}{ }^{(1)} \\ (\mathrm{V}) \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathbf{S}} \\ & \text { (V) } \end{aligned}$	$\begin{gathered} \mathrm{v}_{\mathrm{T}} @ 5 \mathrm{~A} \\ \text { (V) } \end{gathered}$	$\text { IDRM }{ }^{(2)}$ (A)	$\begin{gathered} \mathrm{I}_{\mathrm{BO}}{ }^{(3)} \\ (\mathrm{mA}) \end{gathered}$	$\begin{gathered} \mathrm{c}_{0}{ }^{(4)} \\ (\mathrm{pF}) \end{gathered}$	$\underset{\text { (nS) }}{V_{B O} \text { to } V_{T}}$
LT230	195-265	184-276	15	1.0	50	2.0	25
LT800	680-920	640-960	15	1.0	50	2.0	25

Electrical Life:

Switching Cycles (5)
). \qquad 400,000
Peak Discharge Current (5) \qquad 400 A

Maximum Ratings:

Max Switching Frequency \qquad 100 Hz

Notes:

(1) Measured on recommended test circuit (fig 1.)
(2) Measured @ 100 Volts DC
(3) Current required for transition to on-state
(4) Measured @ 1 MHz , zero Volt bias
(5) Measured on recommended test circuit (fig 2.)

Definitions:

$\mathrm{V}_{\text {BO }}$ - Breakover Voltage
$\mathbf{V}_{\mathbf{S}}$ - Switching Voltage
$\mathrm{V}_{\mathbf{T}}$ @ 5A - Nominal Off-state Voltage at 5A
IDRM - Off-state Current
$\mathbf{I}_{\mathbf{B O}}$ - Nominal Breakover Current
$\mathbf{C}_{\mathbf{o}}$ - Max Capacitance
$\mathrm{V}_{\mathbf{B O}}$ to $\mathrm{V}_{\mathbf{T}}$ - Max switching time from V_{BO} to V_{T}

Fig 1. Recommended breakover voltage test circuit (Discharge current $=10-20 \mathrm{~mA}$, sensitivity of Peak Voltage Detect $=10-30 \mathrm{~mA}$)

Fig 2. Recommended Life Circuit

