

Vishay Sprague

Solid Tantalum Chip Capacitors TANTAMOUNT[®], Ultra-Low ESR, Conformal Coated, Maximum CV

FEATURES

- · New case size offerings
- Low profile case: V case (2 mm)
- Terminations: Tin (2) standard
- Extremely low ESR
- Ripple current up to 4.1 A
- Compliant to RoHS Directive 2002/95/EC

RoHS COMPLIANT

PERFORMANCE CHARACTERISTICS

Operating Temperature: - 55 °C to + 85 °C (To + 125 °C with voltage derating)

Note: Refer to doc. 40088 Capacitance Range: 10 μ F to 1500 μ F Capacitance Tolerance: ± 10 %, ± 20 % standard Voltage Rating: 4 WV_{DC} to 75 WV_{DC}

ORDERING INFORMATION								
597D	687	X0	6R3	E	2	Т		
TYPE	CAPACITANCE	CAPACITANCE TOLERANCE	DC VOLTAGE RATING AT + _I 85 °C	CASE CODE	TERMINATION	REEL SIZE AND PACKAGING		
	This is expressed in pF. The first two digits are the significant figures. The third is the number of zeros to follow.	X0 = ± 20 % X9 = ± 10 %	This is expressed in V. To complete the three-digit block, zeros precede the voltage rating. A decimal point is indicated by an "R" (6R3 = 6.3 V).	See Ratings and Case Code table	2 = 100 % tin 8 = Solder plated (60/40) special order	T =Tape and reel 7" [500] reel W = 13" [N/A] reel		

Note

_

Preferred tolerance and reel sizes are in bold. We reserve the right to supply higher voltage ratings and tighter capacitance tolerance capacitors in the same case size. Voltage substitutions will be marked with the higher voltage rating

DIMENSIONS in inches [millimeters]									
$ \begin{array}{c} J \\ \hline H \\ H \\ \hline H \\ $									
CASE CODE	L (MAX.)	W	н	Α	В	D (REF.)	J (MAX.)		
E	0.299 [7.6]	$\begin{array}{c} 0.173 \pm 0.016 \\ [4.4 \pm 0.4] \end{array}$	0.157 ± 0.016 [4.0 ± 0.4]	0.051 ± 0.012 [1.3 ± 0.3]	0.180 ± 0.025 [4.6 ± 0.6]	0.253 [6.4]	0.004 [0.1]		
F	0.299 [7.6]	$\begin{array}{c} 0.238 \pm 0.016 \\ [6.0 \pm 0.4] \end{array}$	0.187 ± 0.016 [4.7 ± 0.4]	$\begin{array}{c} 0.056 \pm 0.017 \\ [1.4 \pm 0.4] \end{array}$	0.180 ± 0.025 [4.6 ± 0.6]	0.243 [6.2]	0.004 [0.1]		
R	0.299 [7.6]	0.238 + 0.016/- 0.024 [6.0 + 0.4/- 0.6]	$\begin{array}{c} 0.142 \pm 0.016 \\ [3.6 \pm 0.4] \end{array}$	0.051 ± 0.012 [1.3 ± 0.3]	0.180 ± 0.025 [4.6 ± 0.6]	0.243 [6.2]	0.004 [0.1]		
V	0.299 [7.6]	0.173 ± 0.016 [4.4 ± 0.4]	0.079 [2.0] Max.	0.051 ± 0.012 [1.3 ± 0.3]	0.180 ± 0.025 [4.6 ± 0.6]	0.253 [6.4]	0.004 [0.1]		
Z	0.299 [7.6]	$\begin{array}{c} 0.238 \pm 0.016 \\ [6.0 \pm 0.4] \end{array}$	$\begin{array}{c} 0.238 \pm 0.016 \\ [6.0 \pm 0.4] \end{array}$	$\begin{array}{c} 0.056 \pm 0.017 \\ [1.4 \pm 0.4] \end{array}$	0.180 ± 0.025 [4.6 ± 0.6]	0.243 [6.2]	0.004 [0.1]		
D	0.299 [7.6]	0.173 ± 0.016 [4.4 ± 0.4]	0.137 [3.5] Max.	$\begin{array}{c} 0.051 \pm 0.012 \\ [1.3 \pm 0.3] \end{array}$	0.180 ± 0.025 [4.6 ± 0.6]	0.253 [6.4]	0.004 [0.1]		
М	0.315 [8.0]	0.259 + 0.016/-0.024 [6.6 + 0.4/-0.6]	$\begin{array}{c} 0.141 \pm 0.016 \\ [3.6 \pm 0.4] \end{array}$	$\begin{array}{c} 0.051 \pm 0.012 \\ [1.3 \pm 0.3] \end{array}$	0.196 ± 0.025 [5.0 ± 0.6]	0.259 [6.6]	0.004 [0.1]		
Н	0.315 [8.0]	0.259 + 0.016/-0.024 [6.6 + 0.4/-0.6]	0.204 ± 0.016 [5.2 ± 0.4]	0.056 ± 0.017 [1.4 ± 0.4]	0.196 ± 0.025 [5.0 ± 0.6]	0.259 [6.6]	0.004 [0.1]		
Ν	0.315 [8.0]	0.259 + 0.016/-0.024 [6.6 + 0.4/-0.6]	$\begin{array}{c} 0.252 \pm 0.016 \\ [6.4 \pm 0.4] \end{array}$	$\begin{array}{c} 0.056 \pm 0.017 \\ [1.4 \pm 0.4] \end{array}$	0.196 ± 0.025 [5.0 ± 0.6]	0.259 [6.6]	0.004 [0.1]		

Note

• The anode termination (D less B) will be a minimum of 0.012" [0.3 mm]

* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 40047 Revision: 04-Nov-10

For technical questions, contact: tantalum@vishay.com

Vishay Sprague

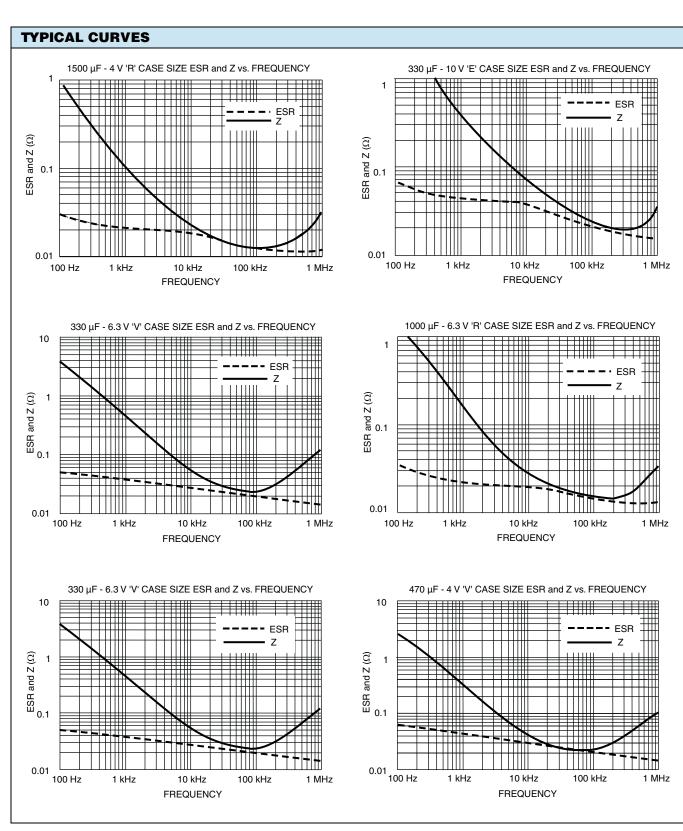
Solid Tantalum Chip Capacitors TANTAMOUNT[®], Ultra-Low ESR, Conformal Coated, Maximum CV

RATINGS AND CASE CODE										
μF	4 V	6.3 V	10 V	16 V	20 V	25 V	35 V	50 V	63 V	75 V
10									D	R*
15								E/R	R	
22								R	F	
33								F		
47							R	Z		
68						R	F			
100							F			
150						F				
220				E	R	М				
330		V	E		Н					
470	V	E	E	Н						
680	E	E	R							
1000	E/R	R	F							
1500	R									

STANDARD RATINGS

CAPACITANCE (µF)	CASE CODE	PART NUMBER	MAX. DCL AT + 25 °C (μΑ)	MAX. DF AT + 25 °C 120 Hz (%)	MAX. ESR AT + 25 °C 100 kHz (mΩ)	MAX. RIPPLE 100 kHz I _{RMS} (A)
		4 WV _{DC} AT -	+ 85 °C, 2.7 WV _{DC} A			
470	V	597D477X_004V	19	8	30	2.2
680	E	597D687X_004E	27	6	25	2.9
1000	E	597D108X_004E	40	8	20	3.3
1000	R	597D108X_004R	40	8	18	3.7
1500	R	597D158X_004R	60	8	15	4.1
		6.3 WV _{DC} A	Γ + 85 °C, 4 WV _{DC} Α	T + 125 °C		
330	V	597D337X_6R3V	21	8	38	2.0
470	E	597D477X_6R3E	30	6	30	2.7
680	E	597D687X_6R3E	43	6	25	2.9
1000	R	597D108X_6R3R	63	8	20	3.5
		10 WV _{DC} AT	" + 85 °C, 7 WV _{DC} A	T + 125 °C		
330	E	597D337X_010E	33	6	35	2.5
470	E	597D477X_010E	47	6	28	2.8
680	R	597D687X_010R	68	6	28	3.0
1000	F	597D108X_010F	100	20	120	1.4
		16 WV _{DC} AT	+ 85 °C, 10 WV _{DC} A	T + 125 °C		
220	E	597D227X_016E	35	8	60	2.3
470	Н	597D477X_016H	75	14	100	1.4
		20 WV _{DC} AT	+ 85 °C, 13 WV _{DC} A	T + 125 °C		
220	R	597D227X_020R	44	8	80	1.8
330	Н	597D337X_020H	66	10	100	1.6
		25 WV _{DC} AT	+ 85 °C, 17 WV _{DC} A	AT + 125 °C		
68	R	597D686X_025R	17	6	100	1.6
150	F	597D157X_025F	38	8	80	1.8
220	М	597D227X_025M	55	8	100	1.6
			+ 85 °C, 23 WV _{DC} A	T + 125 °C		
47	R	597D476X_035R	17	6	100	1.8
68	F	597D686X_035F	24	6	100	1.6
100	F	597D107X0035F	35	8	100	1.6
		50 WV _{DC} AT	+ 85 °C, 33 WV _{DC} A	AT + 125 °C		
15	E	597D156X_050E	8	6	350	0.9
15	R	597D156X_050R	8	6	250	1.0
22	R	597D226X_050R	11	6	220	1.2
33	F	597D336X_050F	17	6	150	1.3
47	Z	597D476X_050Z	24	6	240	1.4
		63 WV _{DC} AT	+ 85 °C, 42 WV _{DC} A	AT + 125 °C		
10	D	597D106X_063D	10	6	400	0.6
15	R	597D156X_063R	10	6	400	0.8
22	F	597D226X_063F	14	6	250	1.1
		75 WV _{DC} AT	+ 85 °C, 50 WV _{DC} A	AT + 125 °C		
10	R	597D106X_075R	8	6	500	0.7

Note * Preliminary values, contact factory for availability


www.vishay.com 2

Solid Tantalum Chip Capacitors TANTAMOUNT[®], Ultra-Low ESR, Conformal Coated, Maximum CV

Vishay Sprague

597D

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.