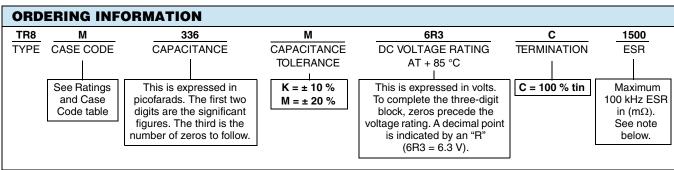


Solid Tantalum Chip Capacitors MICROTAN™ Low ESR, Leadframeless Molded

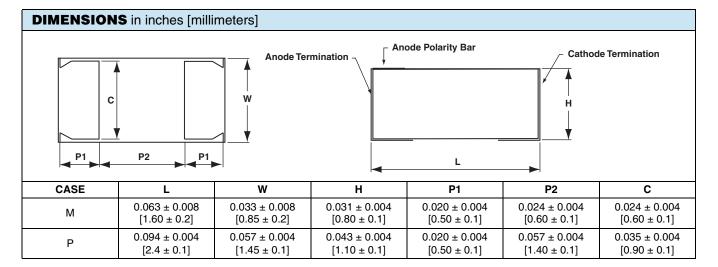
FEATURES

- 0603 and 0805 footprint
- Lead (Pb)-free face-down terminations
- 8 mm tape and reel packaging available per EIA-481-1 and reeling per IEC 286-3
 7" [178 mm] standard
- Low ESR
- Compliant to RoHS Directive 2002/95/EC


RoHS COMPLIANT

PERFORMANCE CHARACTERISTICS

Operating Temperature: - 55 °C to + 85 °C

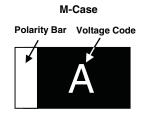

(To + 125 °C voltage derating)

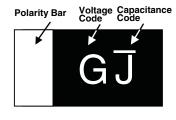
Capacitance Range: 1 μ F to 220 μ F Capacitance Tolerance: \pm 20 % standard Voltage Range: 4 WV_{DC} to 16 WV_{DC}

Note

We reserve the right to supply higher voltage ratings and tighter capacitance tolerance capacitors in the same case size.
 Voltage substitutions will be marked with the higher voltage rating. The EIA and CECC standars for low ESR solid tantalum chip capacitors, allow delta ESR of 1.25 times the datasheet limit after mounting.

^{**} Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902




Solid Tantalum Chip Capacitors MICROTAN™ Low ESR, Leadframeless Molded

Vishay Sprague

RATINGS AND CASE CODES						
μF	2.5 V	4 V	6.3 V	10 V	16 V	
1.0					М	
2.2						
3.3						
4.7					M (3)	
6.8						
10			М	М		
15				М		
22			М			
33		М	М	·		
47		М		Р		
220		Р				

MARKING

P-Case

Volts	Code
4	G
6.3	J
10	Α
16	С
20	D
25	E

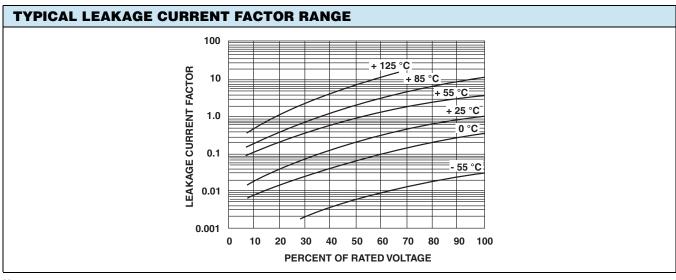
Сар, µГ	Code
33	n
47	S
68	w
100	Ā
150	Ē
220	J

STANDARI	RATI	NGS					
CAPACITANCE (µF)	CASE CODE	PART NUMBER	MAX. DC LEAKAGE AT + 25 °C (μA)	MAX. DF AT + 25 °C (%)	MAX. ESR AT + 25 °C 100 kHz (Ω)	MAX. RIPPLE 100 kHz I _{rms} (A)	∆C/C ⁽¹⁾ (%)
		4 WV _{DC}	AT + 85 °C,	2.7 WV _{DC} AT +	125 °C		
33	М	TR8M336M004C1500	2.6	15	1.5	0.129	± 20
47	M	TR8M476M004C1500	3.8	20	1.5	0.129	± 30
220	Р	TR8P227M004C1000 (2)	17.6	30	1.0	0.212	± 30
		6.3 WV _D	_{OC} AT + 85 °C, .	4 WV _{DC} AT +	125 °C		
10	М	TR8M106M6R3C2000 (2)	0.6	8.0	2.0	0.112	± 10
22	М	TR8M226M6R3C1500	2.8	20	1.5	0.129	± 15
33	М	TR8M336M6R3C1500	4.2	30	1.5	0.129	± 30
		10 WV _D	_C AT + 85 °C, .	7 WV _{DC} AT +	125 °C		
10	М	TR8M106M010C2000	1.0	20	2.0	0.112	± 15
15	M	TR8M156M010C3000 (2)	1.5	20	3.0	0.091	± 20
47	Р	TR8P476M010C0800	4.7	22	0.8	0.237	± 20
		16 WV _D	C AT + 85 °C,	. 10 WV _{DC} AT +	- 125 °C		
1.0	М	TR8M105M016C9500 (2)	0.5	6.0	9.5	0.05	± 15
4.7	М	TR8M475M016C4000 (3)	0.8	8.0	4.0	0.08	± 15

Notes

⁽¹⁾ See Performance Characteristics tables

 $^{^{(2)}}$ ± 10 % capacitance tolerance available


⁽³⁾ Preliminary ratings - contact factory for availability

Solid Tantalum Chip Capacitors MICROTAN™ Low ESR, Leadframeless Molded

CAPACITORS PERFORMANCE CHARACTERISTICS

ITEM	RMANCE CHARACT	CTEDISTICS			
	PERFORMANCE CHARACTERISTICS - 55 °C to + 85 °C (to + 125 °C with voltage derating)				
Category Temperature Range	,	<u> </u>			
Capacitance Tolerance		e) 2 V _{rms} at + 25 °C using a			
Dissipation Factor (at 120 Hz)	<u> </u>	gs Table. Tested via bridge r			
ESR (100 kHz)		gs Table. Tested via bridge r			
Leakage Current			for 5 minutes using a stead		
		•	akage current at 25 °C is not	more than described in.	
	See graph below for the ap	opropriate adjustment factor	7.		
Reverse Voltage	Capacitors are capable of	withstanding peak voltages	in the reverse direction equ	al to: 10 % of the DC	
	5 % of the DC rating at + 85 °C				
	Vishay does not recomme	nded intentional or repetitive	e application of reverse volta	age	
Temperature Derating	If capacitors are to be used	d at temperatures above + 2	25 °C, the permissible rms ri	ipple current or voltage	
remperature Derating	1.0 at + 25 °C 0.9 at + 85 °C	d at temperatures above + 2	25°C, the permissible rms ri	ipple current or voltage	
Operating Temperature	1.0 at + 25 °C		25 °C, the permissible rms ri		
	1.0 at + 25 °C 0.9 at + 85 °C		·		
	1.0 at + 25 °C 0.9 at + 85 °C + 85 °C	RATING	+ 125 °C	RATING	
	1.0 at + 25 °C 0.9 at + 85 °C + 85 °C WORKING VOLTAGE	RATING SURGE VOLTAGE	+ 125 °C WORKING VOLTAGE	RATING SURGE VOLTAGE	
	1.0 at + 25 °C 0.9 at + 85 °C + 85 °C WORKING VOLTAGE	RATING SURGE VOLTAGE 5.2	+ 125 °C WORKING VOLTAGE 2.7	RATING SURGE VOLTAGE 3.4	
	1.0 at + 25 °C 0.9 at + 85 °C + 85 °C WORKING VOLTAGE 4 6.3	RATING SURGE VOLTAGE 5.2 8	+ 125 °C WORKING VOLTAGE 2.7 4	RATING SURGE VOLTAGE 3.4 5	
, ,	1.0 at + 25 °C 0.9 at + 85 °C + 85 °C WORKING VOLTAGE 4 6.3 10	RATING SURGE VOLTAGE 5.2 8 13	+ 125 °C WORKING VOLTAGE 2.7 4 7	### RATING SURGE VOLTAGE 3.4 5 8	
	1.0 at + 25 °C 0.9 at + 85 °C + 85 °C WORKING VOLTAGE 4 6.3 10 16	RATING SURGE VOLTAGE 5.2 8 13 20	+ 125 °C WORKING VOLTAGE 2.7 4 7 10	RATING SURGE VOLTAGE 3.4 5 8 12	
	1.0 at + 25 °C 0.9 at + 85 °C + 85 °C WORKING VOLTAGE 4 6.3 10 16 20	8 13 20 26	+ 125 °C WORKING VOLTAGE 2.7 4 7 10 13	RATING SURGE VOLTAGE 3.4 5 8 12 16	

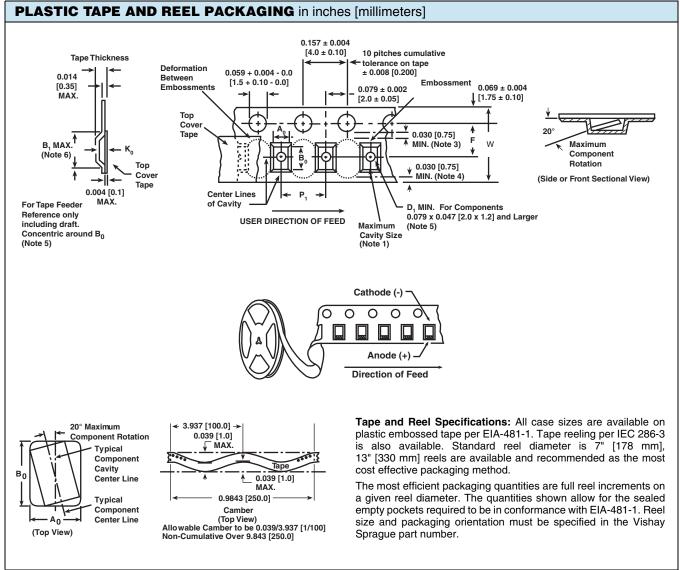
Notes

- At + 25 °C, the leakage current shall not exceed the value listed in the Standard Ratings Table.
- At + 85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings Table.
- At + 125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings Table.

www.vishay.com

For technical questions, contact: tantalum@vishay.com

Solid Tantalum Chip Capacitors MicroTan™ Low ESR, Leadframeless Molded


Vishay Sprague

ENVIRONMENTAL PERFORMANCE CHARACTERISTICS					
ITEM	CONDITION POST TEST PERFORMANCE				
Life Test at + 85 °C	1000 hours application of rated voltage at 85 °C with a 3 Ω series resistance, MIL-STD 202G Method 108A	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Not to exceed 150 % of initial Not to exceed 200 % of initial		
Humidity Tests	At 40 °C/90 % RH 500 hours, no voltage applied. MIL-STD 202G Method 103B	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Not to exceed 150 % of initial Not to exceed 200 % of initial		
Thermal Shock	At - 55 °C/+ 125 °C, 30 minutes each, for 5 cycles. MIL-STD 202G Method 107G	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Not to exceed 150 % of initial Not to exceed 200 % of initial		

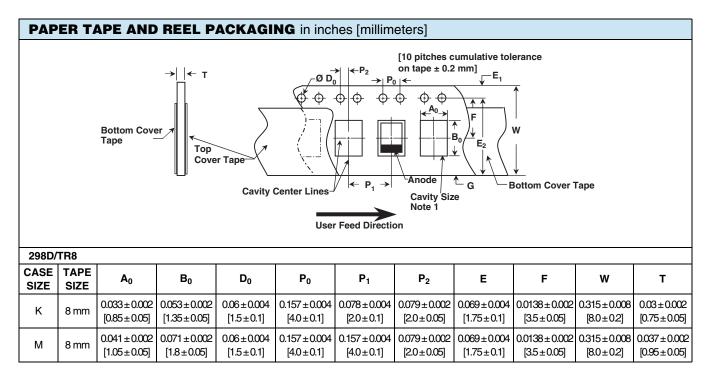
MECHANICAL	MECHANICAL PERFORMANCE CHARACTERISTICS					
TEST CONDITION	CONDITION	POST TEST PERFORMANCE				
Terminal Strength	Apply a pressure load of 5 N for 10 \pm 1 seconds horizontally to the center of capacitor side body. AEC-Q200 rev. C Method 006	Capacitance Change Refer to Standard Ratings Table Dissipation Factor Initial specified value or less Leakage Current Initial specified value or less				
		There shall be no mechanical or visual damage to capacitors post-conditioning.				
Substrate Bending (Board flex)	With parts soldered onto substrate test board, apply force to the test board for a deflection of 1 mm. AEC-Q200 rev. C Method 005	Capacitance Change Refer to Standard Ratings Table Dissipation Factor Initial specified value or less Leakage Current Initial specified value or less				
Vibration	MIL-STD-202G, Method 204D, 10 Hz to 2000 Hz, 20 <i>g</i> Peak	Capacitance Change Refer to Standard Ratings Table Dissipation Factor Initial specified value or less Leakage Current Initial specified value or less				
		There shall be no mechanical or visual damage to capacitors post-conditioning.				
Shock	Mil-Std-202G, Method 213B, Condition I, 100 g Peak	Capacitance Change Refer to Standard Ratings Table Dissipation Factor Initial specified value or less Leakage Current Initial specified value or less				
		There shall be no mechanical or visual damage to capacitors post-conditioning.				
Resistance to Solder Heat	At 260 °C, for 10 seconds, reflow	Capacitance Change Refer to Standard Ratings Table Dissipation Factor Not to exceed 150 % of initial Leakage Current Not to exceed 200 % of initial				
		There shall be no mechanical or visual damage to capacitors post-conditioning.				
Solderability	MIL-STD-202G, Method 208H, ANSI/J-STD-002, Test B. Applies only to Solder and tin plated terminations. Does not apply to gold terminations.	There shall be no mechanical or visual damage to capacitors post-conditioning.				
Resistance to Solvents	MIL-STD-202, Method 215D	There shall be no mechanical or visual damage to capacitors post-conditioning.				
Flammability	Encapsulation materials meet UL 94 V-0 with an oxygen index of 32 %.					

Solid Tantalum Chip Capacitors MICROTAN™ Low ESR, Leadframeless Molded

Note

Metric dimensions will govern. Dimensions in inches are rounded and for reference only.

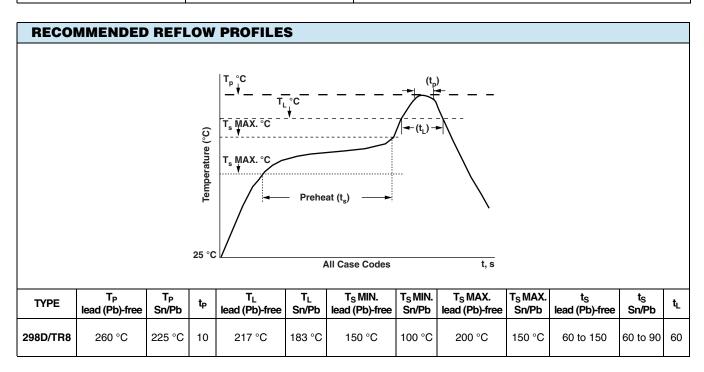
CASE CODE	TAPE SIZE	B ₁ (MAX.)	D ₁ (MIN.)	F	K ₀ (MAX.)	P ₁	w
298D/TR8							
Р	8 mm	0.108 [2.75]	0.039 [1.0]	0.138 ± 0.002 [3.5 ± 0.05]	0.054 [1.37]	0.157 ± 0.004 [4.0 ± 1.0]	0.315 + 0.0118/- 0.0039 [8.0 + 0.30/- 0.10]

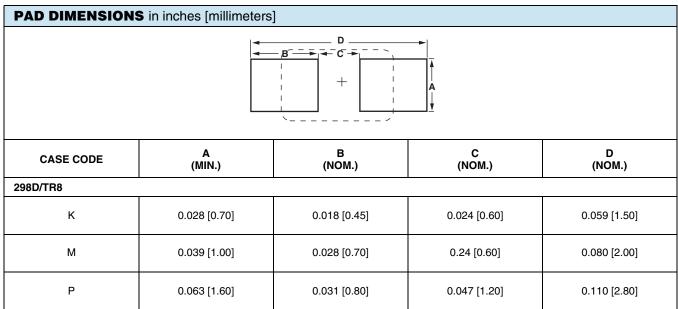

www.vishay.com

For technical questions, contact: tantalum@vishay.com

Solid Tantalum Chip Capacitors MICROTAN™ Low ESR, Leadframeless Molded

Vishay Sprague


STANDARD PACKAGING QUANTITY					
SERIES	CASE CODE	QTY (PCS/REEL)			
		7" REEL	13" REEL		
298D/TR8	К	10 000	N/a		
	M	4000	N/a		
	Р	3000	N/a		


RECOMMENDED VOLTAGE DERATING GUIDELINES					
STANDARD CONDITIONS: FOR EXAMPLE: OUTPUT FILTERS					
Capacitor Voltage Rating	Operating Voltage				
4.0	2.5				
6.3	3.6				
10	6.0				
16	10				
20	12				
25	15				
35	24				
50	28				
SEVERE CONDITIONS: FOR EXAMPLE: INPUT FILTERS					
Capacitor Voltage Rating	Operating Voltage				
4.0	2.5				
6.3	3.3				
10	5.0				
16	8.0				
20	10				
25	12				
35	15				
50	24				

Solid Tantalum Chip Capacitors MICROTAN™ Low ESR, Leadframeless Molded

POWER DISSIPATION				
CASE CODE		MAXIMUM PERMISSIBLE POWER DISSIPATION AT + 25 °C (W) IN FREE AIR		
	К	0.015		
298D/TR8	М	0.025		
	Р	0.045		

Downloaded from Elcodis.com electronic components distributor

Revision: 14-Jan-11

Document Number: 40114

Solid Tantalum Chip Capacitors MICROTANTM Low ESR, Leadframeless Molded

Vishay Sprague

GUIDE TO APPLICATION

 A-C Ripple Current: The maximum allowable ripple current shall be determined from the formula:

$$I_{rms} = \sqrt{\frac{P}{R_{ESR}}}$$

where.

P =

Power dissipation in watts at + 25 °C as given in the table in paragraph number 5

(power dissipation).

R_{ESR} =

The capacitor equivalent series resistance at the specified frequency.

 A-C Ripple Voltage: The maximum allowable ripple voltage shall be determined from the formula:

$$V_{rms} = Z \sqrt{\frac{P}{R_{ESR}}}$$

or, from the formula:

$$V_{rms} \, = \, I_{rms} \times Z$$

where,

P =

Power dissipation in watts at + 25 °C as given in the table in paragraph number 5

(power dissipation).

R_{ESR} =

The capacitor equivalent series

resistance at the specified frequency.

Z = The capacitor impedance at the specified

frequency.

- 2.1 The sum of the peak AC voltage plus the applied DC voltage shall not exceed the DC voltage rating of the capacitor.
- 2.2 The sum of the negative peak AC voltage plus the applied DC voltage shall not allow a voltage reversal exceeding 10 % of the DC working voltage at + 25 °C.
- 3. **Reverse Voltage:** These capacitors are capable of withstanding peak voltages in the reverse direction equal to 10 % of the DC rating at + 25 °C, 5 % of the DC rating at + 85 °C and 1 % of the DC rating at + 125 °C.
- 4. Temperature Derating: If these capacitors are to be operated at temperatures above + 25 °C, the permissible rms ripple current or voltage shall be calculated using the derating factors as shown:

TEMPERATURE	DERATING FACTOR
+ 25 °C	1.0
+ 85 °C	0.9
+ 125 °C	0.4

5. **Power Dissipation:** Power dissipation will be affected by the heat sinking capability of the mounting surface. Non-sinusoidal ripple current may produce heating effects which differ from those shown. It is important that the equivalent I_{rms} value be established when calculating permissible operating levels. (Power Dissipation calculated using + 25 °C temperature rise.)

- 6. **Printed Circuit Board Materials:** Molded capacitors are compatible with commonly used printed circuit board materials (alumina substrates, FR4, FR5, G10, PTFE-fluorocarbon and porcelanized steel).
- 7. Attachment:
- 7.1 **Solder Paste:** The recommended thickness of the solder paste after application is 0.007" ± 0.001" [0.178 mm ± 0.025 mm]. Care should be exercised in selecting the solder paste. The metal purity should be as high as practical. The flux (in the paste) must be active enough to remove the oxides formed on the metallization prior to the exposure to soldering heat. In practice this can be aided by extending the solder preheat time at temperatures below the liquidous state of the solder.
- 7.2 **Soldering:** Capacitors can be attached by conventional soldering techniques; vapor phase, convection reflow, infrared reflow, wave soldering and hot plate methods. The Soldering Profile charts show recommended time/temperature conditions for soldering. Preheating is recommended. The recommended maximum ramp rate is 2 °C per second. Attachment with a soldering iron is not recommended due to the difficulty of controlling temperature and time at temperature. The soldering iron must never come in contact with the capacitor.
- 7.2.1 Backward and Forward Compatibility: Capacitors with SnPb or 100 % tin termination finishes can be soldered using SnPb or lead (Pb)-free soldering processes.
- 8. Cleaning (Flux Removal) After Soldering: Molded capacitors are compatible with all commonly used solvents such as TES, TMS, Prelete, Chlorethane, Terpene and aqueous cleaning media. However, CFC/ODS products are not used in the production of these devices and are not recommended. Solvents containing methylene chloride or other epoxy solvents should be avoided since these will attack the epoxy encapsulation material.
- 8.1 When using ultrasonic cleaning, the board may resonate if the output power is too high. This vibration can cause cracking or a decrease in the adherence of the termination. DO NOT EXCEED 9W/I at 40 kHz for 2 minutes.
- 9. Recommended Mounting Pad Geometries: Proper mounting pad geometries are essential for successful solder connections. These dimensions are highly process sensitive and should be designed to minimize component rework due to unacceptable solder joints. The dimensional configurations shown are the recommended pad geometries for both wave and reflow soldering techniques. These dimensions are intended to be a starting point for circuit board designers and may be fine tuned if necessary based upon the peculiarities of the soldering process and/or circuit board design.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1